Hiroshima Mathematical Journal

On the group of self-equivalences of a mapping cone

Shichirô Oka, Norichika Sawashita, and Masahiro Sugawara

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 4, Number 1 (1974), 9-28.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206137149

Digital Object Identifier
doi:10.32917/hmj/1206137149

Mathematical Reviews number (MathSciNet)
MR0346779

Zentralblatt MATH identifier
0284.55013

Subjects
Primary: 55D10

Citation

Oka, Shichirô; Sawashita, Norichika; Sugawara, Masahiro. On the group of self-equivalences of a mapping cone. Hiroshima Math. J. 4 (1974), no. 1, 9--28. doi:10.32917/hmj/1206137149. https://projecteuclid.org/euclid.hmj/1206137149


Export citation

References

  • [1] W. D. Barcus andM. G. Barratt: Onthehomotopy classification of a fixed map, Trans. Amer. Math. Soc.88 (1958), 57-74.
  • [2] A. L. Blakers and W. S. Massey: The homotopy groups of a triad II, Ann. of Math. 55 (1952), 192-201.
  • [3] P. J. Hilton: On the homotopy groups of the union of spheres, J. London Math. Soc. 30 (1955), 154-172.
  • [4] P. J. Hilton: On the homotopy groups of the union of spheres, A note on the P-homomorphism in homotopy groups of spheres,Proc. Cambridge Philos. Soc.51 (1955), 230-233.
  • [5] W. C. Hsiang, J. Levine and R. H. Szczarba: On the normal bundle of a homotopy sphere embedded in Euclidean space.Topology 3 (1965), 173-181.
  • [6] I. M.James: On the sphere-bundles over spheres, Comment. Math. Helv. 35 (1961), 126- 135.
  • [7] Y. Nomura: Homotopy equivalences in a principal fiber space, Math. Zeit. 92 (1966), 380- 388.
  • [8] S. Oka: Groups of self-equivalences of certain complexes, Hiroshima Math. J. 2 (1972), 285- 298.
  • [9] J. W. Rutter: A homotopy classification of maps into aninducedfibrespace, Topology 6 (1967), 379-403.
  • [10] J. W. Rutter: A homotopy classification of maps into aninducedfibrespace, Self-equivalences and principal morphisms, Proc. London Math. Soc. (3) 20 (1970), 644-658.
  • [11] J. W. Rutter: A homotopy classification of maps into aninducedfibrespace, Groups of self homotopy equivalences of inducedspaces, Comment. Math. Helv. 45 (1970), 236-255.
  • [12] H. Toda: Composition methods inhomotopy groupsof spheres, Ann. of Math. Studies, no. 49, Princeton Univ. Press, Princeton, N. J.,1962.