Hiroshima Mathematical Journal

Note on $\gamma $-operations in $K{\rm O}$-theory

Teiichi Kobayashi

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 4, Number 2 (1974), 425-434.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206137073

Digital Object Identifier
doi:10.32917/hmj/1206137073

Mathematical Reviews number (MathSciNet)
MR0356051

Zentralblatt MATH identifier
0287.55016

Subjects
Primary: 55G25

Citation

Kobayashi, Teiichi. Note on $\gamma $-operations in $K{\rm O}$-theory. Hiroshima Math. J. 4 (1974), no. 2, 425--434. doi:10.32917/hmj/1206137073. https://projecteuclid.org/euclid.hmj/1206137073


Export citation

References

  • [1] J. F. Adams, Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
  • [2] J. F. Adams and G. Walker, On complex Stiefel manifolds, Proc. Camb. Phil. Soc. 61 (1965), 81-103.
  • [3] M. F. Atiyah, Immersions and embeddings of manifolds, Topology 1 (1962), 125-132.
  • [4] A. Dold, Erzeugendeder Thomschen Algebra ft, Math. Zeit. 65 (1956), 25-35.
  • [5] M. Fujii, K ^-groups of Dold manifolds,Osaka J. Math. 3 (1966), 49-64.
  • [6] M. Fujii and T. Yasui, K0 -cohomologies of the Dold manifolds, Math. J. Okayama Univ. 16 (1973), 55-84.
  • [7] T. Kambe, The structure of K -rings of the lens spaceand their applications, J. Math. Soc. Japan 18 (1966),135-146.
  • [8] T. Kawaguchi and M. Sugawara, K- and KO-rings of the lens spaceLn(p2) for odd prime p, Hiroshima Math. J. 1 (1971), 273-286.
  • [9] T. Kobayashi, Non-immersion theorems for lens spaces. II, J. Sci. Hiroshima Univ. Ser. A-I 32 (1968), 285-292.
  • [10] T. Kobayashi, Immersions andembeddings of lensspaces, Hiroshima Math.J. 2 (1972), 345- 352.
  • [11] N. Mahammed, A propos de la K-theorie des espaces lenticulaires, C. R. Acad. Sci. Paris 271 (1970), 639-642.
  • [12] J.J. Ucci, Immersions and embeddings of Dold manifolds, Topology 4 (1965), 283-293.