Hiroshima Mathematical Journal

Integral representations of Beppo Levi functions of higher order

Yoshihiro Mizuta

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 4, Number 2 (1974), 375-396.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206137069

Digital Object Identifier
doi:10.32917/hmj/1206137069

Mathematical Reviews number (MathSciNet)
MR0350041

Zentralblatt MATH identifier
0287.31005

Subjects
Primary: 31C15: Potentials and capacities
Secondary: 46E35: Sobolev spaces and other spaces of "smooth" functions, embedding theorems, trace theorems

Citation

Mizuta, Yoshihiro. Integral representations of Beppo Levi functions of higher order. Hiroshima Math. J. 4 (1974), no. 2, 375--396. doi:10.32917/hmj/1206137069. https://projecteuclid.org/euclid.hmj/1206137069


Export citation

References

  • [1] N.Aronszajn, F. Mulla and P. Steptycki, On spaces of potentials connected with LP classes, Ann.Inst. Fourier 13 (1963), 211-306.
  • [2] M.Brelot, Lectures on potential theory, Tata Institute of Fundamental Research, Bombay, 1960.
  • [3] A. P. Caldern, Lebesgue spaces of differentiable functions and distributions, Proc. Sympos. Pure Math., Vol. IV, Amer. Math. Soc, 1961,33-49.
  • [4] A. P. Caldern and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139.
  • [5] J. Deny and J. L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier 5 (1955), 305-370.
  • [6] B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171-219.
  • [7] J. L. Lions, Problemes aux limites dans les equations aux derivees partielles, Sem. Math. Sup.Univ. Montreal, No. 1,1962.
  • [8] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture notes, Hiroshima University, 1973.
  • [9] Yu. G. Reshetnyak, Theconcept of capacity in the theory of functions with generalized derivatives, Siberian Math.J. 10 (1969), 818-842.
  • [10] L. Schwartz, Theorie des distributions, Hermann, Paris, 1966.
  • [11] H. Wallin, Continuous functions andpotential theory, Ark. Math. 5 (1963), 55-84.
  • [12] H.Wallin, Riesz potentials, k,/^-capacity and/^-modules, Mich. Math. J. 18 (1971), 257-263.