Hiroshima Mathematical Journal

A two point connection problem for general linear ordinary differential equations

Mitsuhiko Kohno

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 4, Number 2 (1974), 293-338.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206137065

Digital Object Identifier
doi:10.32917/hmj/1206137065

Mathematical Reviews number (MathSciNet)
MR0372354

Zentralblatt MATH identifier
0347.34003

Subjects
Primary: 34E05: Asymptotic expansions

Citation

Kohno, Mitsuhiko. A two point connection problem for general linear ordinary differential equations. Hiroshima Math. J. 4 (1974), no. 2, 293--338. doi:10.32917/hmj/1206137065. https://projecteuclid.org/euclid.hmj/1206137065


Export citation

References

  • [1] G. D. Birkhoff: Collected mathematical papers, Dover, 1968.
  • [2] B.L.J. Braaksma: Asymptotic expansions and analytic continuations for a class of Barnes-integrals, Compositio Math., 15 (1964), 239-341.
  • [3] B.L.J. Braaksma: Asymptotic analysis of a differential equation of Turritin, SI AM J. Math. Anal., 2 (1971), 1-16.
  • [4] N. G. deBruijn: Asymptotic methods in analysis, North-Holland Publishing Co., 1958.
  • [5] A. Erdelyi: The Fuchsian equation ofsecond order with four singularities, DukeMath. J., 9 (1942), 48-58.
  • [6] J. Heading: TheStokes phenomenon and certain n-thorder differential equations, I, II, Proc. Camb. Phil. Soc, 53 (1957), 399-418, 56 (1960), 329-341.
  • [7] K. Heun: Zur Theorie der Riemann'schen Funktionen zweiter Ordnung mit vier Verzweigungs-punkten, Math. Ann., 33 (1889), 161-179,
  • [8] H. W. Knobloch: Zusammenhange zwischen konvergenten und asymptotischen Entwicklungen bei Lsungen linearer Differentialsysteme vom Range Eins, Math. Ann., 134(1958), 260-288.
  • [9] M. Kohno: A two points connection problem involving logarithmic polynomials, Publ. R.I.M.S., Kyoto Univ., 2 (1966), 269-305.
  • [10] M. Kohno: The convergence condition of a series appearing in connection problems and the determination of Stokes multipliers, Publ. R.I.M.S., Kyoto Univ., 3 (1968), 337-350.
  • [11] M. Kohno: A two point connectionproblem for n-th order single linear ordinary differential equations with an irregular singular point of rank two, Jap. J. Math., 40 (1970), 11-62.
  • [12] M. Kohno: Stokes phenomenon for general linear ordinary differential equations with two singular point, Japan-United States Seminar on Ordinary and Functional Equations, Lecture Notes in Mathematics, 243, Springer-Verlag, 1971, 310-313.
  • [13] R. E. Langer: The solutions of the differential equations v'" -2 zv' -{-32 v=0, Duke Math. J., 22 (1955), 525-542.
  • [14] K. Okubo: A global representation of a fundamental set of solutions and a Stokes phenomenon for a system of linear ordinary differential equation, J. Math. Soc.Japan, 15 (1963), 268-288.
  • [15] K. Okubo: A connection problem involving a logarithmic function, Publ. R.I.M.S., Kyoto Univ., 1 (1965), 99-128.
  • [16] K. Okubo: Two point connection problem for a system of first order linear ordinary differential equations with a singular point of rank two, Proceedings of United States- Japan Seminar on Differential and Functional Equations, Benjamin, 1967, 559-566.
  • [17] K. Okubo: Connection problem for systems of linear differential equations, Japan- United States Seminar on Ordinary Differential and Functional Equations, Lecture Notes in Mathematics, 243, Springer-Verlag, 1971, 238-248.
  • [18] O. Perron: Uber einen Satz des Herrn Poincare,J. Reine. Angew. Math., 136 (1909), 17-37.
  • [19] O. Perron: Uber die Poincaresche lineare Differenzengleichungen, J. J. Reine. Angew. Math., 137 (1910), 6-64.
  • [20] O. Perron: Uber das Verhalten der Integrale linearer Differenzengleichungen im Unendlichen, Jber. Deutsch. Math. Verein., 19 (1910), 129-137.
  • [21] B. Riemann: Collected works of Bernhard Riemann, Dover, 1953.
  • [22] G. G. Stokes: On the discontinuity of arbitrary constants which appear in divergent developments, Trans. Camb. Phil. Soc, 10 (1857), 106-128.
  • [23] H. L. Turrittin: Stokes multipliers for asymptotic solutions of a certain differential equation, Trans. Amer. Math. Soc, 68 (1950), 304-329.
  • [24] H. L. Turrittin: Stokes multipliers for the differential equation y {n) --j;/*=0, Funk. Ekv., 9 (1966), 261-272.
  • [25] H. L. Turrittin: Stokes multipliers for the equation ---^- =0, Analytic theory of differential equations, Lecture Notes in Mathematics, 183, Springer-Verlag, 1971, 145- 157.
  • [26] E. M. Wright: The asymptotic expansion of integral functions defined by Taylor series, Phil. Trans. Roy. Soc. London, A 238 (1940), 423-451.