Hiroshima Mathematical Journal

Principal oriented bordism algebra $Ømega \sb{\ast}(Z\sb2\,k)$

Yutaka Katsube

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 4, Number 2 (1974), 265-277.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206137062

Digital Object Identifier
doi:10.32917/hmj/1206137062

Mathematical Reviews number (MathSciNet)
MR0348775

Zentralblatt MATH identifier
0305.57028

Subjects
Primary: 57D85

Citation

Katsube, Yutaka. Principal oriented bordism algebra $Ømega \sb{\ast}(Z\sb2\,k)$. Hiroshima Math. J. 4 (1974), no. 2, 265--277. doi:10.32917/hmj/1206137062. https://projecteuclid.org/euclid.hmj/1206137062


Export citation

References

  • [1] P.E.Conner and E.E.Floyd: Differentiable Periodic Maps, Erg. d. Math. Bd. 33, Springer-Verlag, Berlin-Gttingen-Heidelberg, 1964.
  • [2] N. Hassani: Sur le bordisme des groupes cycliques, C. R. Acad. Sci. Paris. 272 (1971), 776- 778.
  • [3] K. Shibata: Oriented and weakly complex bordism algebra of free periodic maps, Trans. Amer. Math. Soc. 177 (1973), 199-220.
  • [4] K. Shibata: Oriented and weakly complex bordism algebra of free periodic maps, A note on theformal group law of unoriented cobordism theory, Osaka J. Math. 10 (1973), 33-42.
  • [5] J. C. Su: A note on the bordism algebra of involutions, Michigan Math. J. 12 (1965), 25-31.
  • [6] F. Uchida: Bordism algebra of involutions, Proc. Japan Acad. 46 (1970), 615-619.
  • [7] C. T. C. Wall: Determination of the cobordism ring, Ann. of Math. 72 (1960), 292-311.
  • [8] E. R. Wheeler: The oriented bordism of cyclicgroups, to appear.