Hiroshima Mathematical Journal

3-primary $\beta $-family in stable homotopy

Shichirô Oka and Hirosi Toda

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 5, Number 3 (1975), 447-460.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206136538

Digital Object Identifier
doi:10.32917/hmj/1206136538

Mathematical Reviews number (MathSciNet)
MR0385853

Zentralblatt MATH identifier
0312.55017

Subjects
Primary: 55E45

Citation

Oka, Shichirô; Toda, Hirosi. 3-primary $\beta $-family in stable homotopy. Hiroshima Math. J. 5 (1975), no. 3, 447--460. doi:10.32917/hmj/1206136538. https://projecteuclid.org/euclid.hmj/1206136538


Export citation

References

  • [1] J. F. Adams, On the groups J(X)-IV, Topology 5 (1966), 21-71.
  • [2] S. Araki, Typicalformal groups in complex cobordism and K-theory, Lectures in Math. Dept. of Math. Kyoto Univ. 6, Kinokuniya Book-Store Co., Ltd., Tokyo, 1973.
  • [3] M. Hazewinkel, Constructing formal groups /, Netherlands School of Economics, Econometric Institute, Report 7119, 1971.
  • [4] D. C. Johnson and R. S. Zahler, Detecting stable homotopy with secondary cobordism operations II, to appear.
  • [5] H. R. Miller, D. C. Ravenel and W. S. Wilson, Novikov's Ext 2 and the nontriviality of the gamma family, to appear.
  • [6] O. Nakamura, Some differentials in the mod 3 Adams spectral sequence, Bull. Sci. Engrg. Div. Univ. Ryukyus (Math. Nat. Sci.) 19 (1975), 1-26.
  • [7] S. Oka, The stable homotopy groups of spheres II, Hiroshima Math. J. 2 (1972), 99-161.
  • [8] S. Oka, A new family in the stable homotopy groups of spheres, Hiroshima Math. J. 5(1975), 87-114.
  • [9] L. Smith, On realizing complex bordism modules. Applications to the homotopy of spheres, Amer. J. Math. 92 (1970), 793-856.
  • [10] L. Smith, On realizing complex bordismmodules III, Amer. J. Math. 94 (1972), 875-890.
  • [11] H. Toda, p-Primary components of homotopy groups IV. Compositions and toric constructions, Mem. Coll. Sci. Univ. Kyoto, Ser. A, 32 (1959), 288-332.
  • [12] H. Toda, Composition methods in homotopygroups of spheres, Annals of Math. Studies 49, Princeton Univ. Press, Princeton, 1962.
  • [13] H. Toda, An important relation in homotopy groups of spheres, Proc. Japan Acad. 43 (1967), 839-842.
  • [14] H. Toda, On iterated suspensions HI, J. Math. Kyoto Univ. 8 (1968), 101-130.
  • [15] H. Toda, On spectra realizing exterior parts of the Steenrodalgebra, Topology 10 (1971), 53-66.
  • [16] H. Toda, Algebra of stable homotopy ofZp -spaces and applications, J. Math. Kyoto Univ. 11 (1971), 197-251.
  • [17] N. Yamamoto, Algebra of stable homotopyof Moore spaces, J. Math. Osaka City Univ. 14 (1963), 45-67.
  • [18] R. S. Zahler, Fringefamilies in stable homotopy, to appear.