Hiroshima Mathematical Journal

$(łambda ,\,\mu )$-absolutely summing operators

Atsuo Jôichi

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 5, Number 3 (1975), 395-406.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206136535

Digital Object Identifier
doi:10.32917/hmj/1206136535

Mathematical Reviews number (MathSciNet)
MR0394270

Zentralblatt MATH identifier
0318.47016

Subjects
Primary: 47B10: Operators belonging to operator ideals (nuclear, p-summing, in the Schatten-von Neumann classes, etc.) [See also 47L20]

Citation

Jôichi, Atsuo. $(łambda ,\,\mu )$-absolutely summing operators. Hiroshima Math. J. 5 (1975), no. 3, 395--406. doi:10.32917/hmj/1206136535. https://projecteuclid.org/euclid.hmj/1206136535


Export citation

References

  • [1] G. Crofts, Concerning perfect Frechet spaces and diagonal transformations, Math. Ann., 182 (1969), 67-76.
  • [2] ED Dubinsky and M. S. Ramanujan, Inclusion theorems for absolutely -summing maps, Math. Ann., 192 (1971), 177-190.
  • [3] D.J. H. Garling, On symmetric sequence spaces, Proc. London Math. Soc. (3), 16 (1966), 85-105.
  • [4] S. Kwapie, Some remarks on (p, ^-absolutely summing operators in /^-spaces, Studia Math., 29 (1968), 327-337.
  • [5] J. Lindenstrauss and A. Pelczyski, Absolutely summing operators in Lp-spaces and their applications, Studia Math., 29 (1968), 275-326.
  • [6] B. Mitjagin and A. Pelczyski, Nuclear operators and approximative dimension, Proc. I. C. M. Moscow, 1966, 366-372.
  • [7] K. Miyazaki, (p, q; r)-absolutely summing operators, J. Math. Soc. Japan, 24 (1972), 341-354.
  • [8] A. Pietsch, Verallgemeinerte vollkommene Folgenraume, Berlin, 1962.
  • [9] A. Pietsch, Absolut />-summierende Abbildungen in normierten Raumen, Studia Math., 28 (1967), 333-353.
  • [10] M. S. Ramanujan, Absolutely ^-summing operators, a symmetric sequence space, Math. Z., 114 (1970), 187-193.