Hiroshima Mathematical Journal

Potential theoretic properties of the subdifferential of a convex function

Yoshihiro Mizuta and Toshitaka Nagai

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 7, Number 1 (1977), 177-182.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206135958

Digital Object Identifier
doi:10.32917/hmj/1206135958

Mathematical Reviews number (MathSciNet)
MR0438381

Zentralblatt MATH identifier
0359.31002

Subjects
Primary: 58C20: Differentiation theory (Gateaux, Fréchet, etc.) [See also 26Exx, 46G05]
Secondary: 47H05: Monotone operators and generalizations

Citation

Mizuta, Yoshihiro; Nagai, Toshitaka. Potential theoretic properties of the subdifferential of a convex function. Hiroshima Math. J. 7 (1977), no. 1, 177--182. doi:10.32917/hmj/1206135958. https://projecteuclid.org/euclid.hmj/1206135958


Export citation

References

  • [1] H. Brezis, Problemes unilateraux, J. Math. Pures Appl. 51 (1972), 1-168.
  • [2] H. Brezis, Operateurs maximaux monotones et semigroupes de contractions dan les espaces de Hubert, Math. Studies 5, North-Holland,1973.
  • [3] B. Calvert, Potential theoretic properties for nonlinear monotone operators, Boll. Un. Mat. Ital. 5 (1972), 473-489.
  • [4] B. Calvert, Potential theoretic properties for accretive operators, Hiroshima Math. J. 5(1975), 363-370.
  • [5] I. Ekeland and R. Temam, Analyse convexe et problemes variationnels, Dunod Gauthier-Villars, Paris, 1974.
  • [6] N. Kenmochi and Y. Mizuta, The gradient of a convex function on a regular functional space and its potential theoretic properties, Hiroshima Math. J. 4 (1974), 743-763.
  • [7] N. Kenmochi and Y. Mizuta, Potential theoretic properties of the gradient of a convex function on a functional space, Nagoya Math. J. 59 (1975), 199-215.
  • [8] N. Kenmochi, Y. Mizuta and T. Nagai, Projections onto convex sets, convex functions and their subdifferentials, Preprient.