Hiroshima Mathematical Journal

Boundary value control theory of elastodynamic system

Kimiaki Narukawa

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 7, Number 3 (1977), 707-730.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206135656

Digital Object Identifier
doi:10.32917/hmj/1206135656

Mathematical Reviews number (MathSciNet)
MR0462090

Zentralblatt MATH identifier
0403.93006

Subjects
Primary: 73.49

Citation

Narukawa, Kimiaki. Boundary value control theory of elastodynamic system. Hiroshima Math. J. 7 (1977), no. 3, 707--730. doi:10.32917/hmj/1206135656. https://projecteuclid.org/euclid.hmj/1206135656


Export citation

References

  • [1] B. M. N. Clarke, Boundary controllability of linear elastodynamic systems, Quart. J. Mech. Appl. Math., 28 (1975), 497-515.
  • [2] K. Hayashida, On a mixed problem for hyperbolic equations with discontinuous boundary conditions, Publ. RIMS. Kyoto Univ., 7 (1971/72), 57-67.
  • [3] M. Ikawa, Mixed problems for hyperbolic equations of second order, J. Math. Soc. Japan, 20 (1968), 580-608.
  • [4] A. Inoue, On a mixed problem for Q with discontinuous boundary condition (I), J. Fac. Sci. Univ. Tokyo Sec. IA, 21 (1974), 85-92.
  • [5] F. John, On linear partial differential equations with analytic coefficients -- Unique continuation of data, Comm. Pure Appl. Math., 2 (1947), 209-253.
  • [6] A. Inoue, Partial differential equations, Springer-Verlag, Berlin, 1971.
  • [7] J. L. Lions and E. Magenes, Probleme aux limites non homogenes et applications, vol. 1, Dunod, Paris, 1968.
  • [8] D. L. Russell, Boundary value control of the higher-dimensional wave equation, SIAM J. Control, 9 (1971), 29-42.
  • [9] D. L. Russell, Boundary value control theory of the higher-dimensional wave equation, Part II, SIAM J. Control, 9 (1971), 401^19.
  • [10] C. H. Wilcox, Initial-boundary value problems for linear hyperbolic partial differential equations of the second order, Arch. Rat. Mech. Anal., 10 (1962), 361-400.
  • [11] K. Yosida, Functional analysis, Second Edition, Springer-Verlag, Berlin, 1968.