Hiroshima Mathematical Journal

Nonoscillation criteria for differential equations of the second order

John R. Graef and Paul W. Spikes

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 7, Number 3 (1977), 675-681.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206135653

Digital Object Identifier
doi:10.32917/hmj/1206135653

Mathematical Reviews number (MathSciNet)
MR0460787

Zentralblatt MATH identifier
0389.34029

Subjects
Primary: 34C10: Oscillation theory, zeros, disconjugacy and comparison theory

Citation

Graef, John R.; Spikes, Paul W. Nonoscillation criteria for differential equations of the second order. Hiroshima Math. J. 7 (1977), no. 3, 675--681. doi:10.32917/hmj/1206135653. https://projecteuclid.org/euclid.hmj/1206135653


Export citation

References

  • [1] J. R. Graef, A comparison and oscillation result for second order nonlinear differential equations, Abh. Math. Sem. Uni. Hamburg, to appear.
  • [2] J. R. Graef and P. W. Spikes, A nonoscillation result for second order ordinary differential equations, Rend. Accad. Sci. Fis. Mat. Napoli (4) 41 (1974), 92-101.
  • [3] J. R. Graef and P. W. Spikes, A nonoscillation result for a forced second order nonlinear differential equation, in "Dynamical Systems, An International Symposium, Vol. 2," Academic Press, New York, 1976, 275-278.
  • [4] J. R. Graef and P. W. Spikes, Sufficient conditions for nonoscillation of a second order nonlinear differential equation, Proc. Amer. Math. Soc. 50 (1975), 289-292.
  • [5] J. R. Graef and P.W,Spikes, Sufficient conditions for the equation (a(t)x')'+h(t, x, x')+<j(t)f(x, *')=£(', x, x') to be nonoscillatory, Funkcial. Ekvac. 18(1975), 35-40.
  • [6] J. R. Graef and P. W. Spikes, Nonoscillation theorems for forced second order nonlinear differential equations, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 59 (1975), 694-701.
  • [7] J. R. Graef and P. W. Spikes, Comparison and nonoscillation results for perturbed nonlinear differential equations, Ann. Mat. Pura Appl., to appear.
  • [8] J. S.W.Wong, On the generalized Emden-Fowler equation, SIAM Review 17(1975), 339-360.
  • [9] J. S. W. Wong, Oscillation theorems for second order nonlinear differential equations, Bull. Inst. Math. Acad. Sinica 3 (1975), 283-309.