Hiroshima Mathematical Journal

Weakly ascendant subalgebras of Lie algebras

Shigeaki Tôgô

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 10, Number 1 (1980), 175-184.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206134582

Digital Object Identifier
doi:10.32917/hmj/1206134582

Mathematical Reviews number (MathSciNet)
MR558853

Zentralblatt MATH identifier
0438.17010

Subjects
Primary: 17B65: Infinite-dimensional Lie (super)algebras [See also 22E65]
Secondary: 17B05: Structure theory

Citation

Tôgô, Shigeaki. Weakly ascendant subalgebras of Lie algebras. Hiroshima Math. J. 10 (1980), no. 1, 175--184. doi:10.32917/hmj/1206134582. https://projecteuclid.org/euclid.hmj/1206134582


Export citation

References

  • [1] R. K. Amayo and I.Stewart: Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.
  • [2] C-Y. Chao and E. L. Stitzinger: Subinvariance in solvable Lie algebras, Canad. J. Math. 28 (1976), 181-185.
  • [3] N. Kawamoto: Subideality and ascendancy in generalized solvable Lie algebras, Hiroshima Math. J. 9 (1979), 701-716.
  • [4] O. Maruo: Pseudo-coalescent classes of Lie algebras, Hiroshima Math. J. 2 (1972), 205-214.
  • [5] S. Togo: Radicals of infinite dimensional Lie algebras, Hiroshima Math. J. 2 (1972), 179-203.