Hiroshima Mathematical Journal

Remark on the dual of some Lipschitz spaces

Bui Huy Qui

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 10, Number 1 (1980), 163-173.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206134581

Digital Object Identifier
doi:10.32917/hmj/1206134581

Mathematical Reviews number (MathSciNet)
MR558852

Zentralblatt MATH identifier
0434.31001

Subjects
Primary: 46E35: Sobolev spaces and other spaces of "smooth" functions, embedding theorems, trace theorems

Citation

Qui, Bui Huy. Remark on the dual of some Lipschitz spaces. Hiroshima Math. J. 10 (1980), no. 1, 163--173. doi:10.32917/hmj/1206134581. https://projecteuclid.org/euclid.hmj/1206134581


Export citation

References

  • [1] Bui Huy Qui, Harmonic functions, Riesz potentials, and the Lipschitz spaces of Herz, Hiroshima Math. J. 9 (1979), 245-295.
  • [2] T. M. Flett, Temperatures, Bessel potentials and Lipschitz spaces, Proc. London Math. Soc. (3)22(1971), 385-451.
  • [3] T. M. Flett, Temperatures, Lipschitz spaces of functions on the circle and the disk, J. Math. Anal. Appl. 39 (1972), 125-158.
  • [4] C. S. Herz, Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms, J. Math. Mech. 18 (1968), 283-324.
  • [5] K. de Leeuw, Banach spaces of Lipschitz functions, Studia Math. 21 (1961), 55-66.
  • [6] T. Muramatu, On Besov spaces and Sobolev spaces of generalized functions defined on a general region, Publ. Res. Inst. Math. Sci. 9 (1973/74), 325-396.
  • [7] T. Muramatu, On the dual of Besov spaces, ibid. 12 (1976/77), 123-140.
  • [8] J. Peetre, Sur les espaces de Besov, C. R. Acad. Sci. Paris 264 (1967), 281-283.
  • [9] J. Peetre, Sur les espaces de Besov, Remarques sur les espaces de Besov. Le cas 0</?<1, ibid. 277 (1973), 947-949.
  • [10] M. H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean nspaces. I. Principal properties, J. Math. Mech. 13 (1964), 407-479.
  • [11] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verl. Wissenschaften, Berlin, 1978.
  • [12] H. Triebel, Interpolation theory, On spaces of B^ q type and s type, Math. Nachr. 85 (1978), 75-90.