Hiroshima Mathematical Journal

A note on Noetherian Hilbert rings

Kazunori Fujita and Shiroh Itoh

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 10, Number 1 (1980), 153-161.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206134580

Digital Object Identifier
doi:10.32917/hmj/1206134580

Mathematical Reviews number (MathSciNet)
MR558851

Zentralblatt MATH identifier
0513.13004

Subjects
Primary: 13B30: Rings of fractions and localization [See also 16S85]
Secondary: 14C99: None of the above, but in this section

Citation

Fujita, Kazunori; Itoh, Shiroh. A note on Noetherian Hilbert rings. Hiroshima Math. J. 10 (1980), no. 1, 153--161. doi:10.32917/hmj/1206134580. https://projecteuclid.org/euclid.hmj/1206134580


Export citation

References

  • [1] K. Fujita, Infinite dimensional noetherian Hilbert domains, Hiroshima Math. J., 5 (1975), 181-185.
  • [2] K. Fujita, Some counterexamples related to prime chains in integral domains, Hiroshima Math. J., 5 (1975), 473-485.
  • [3] O. Goldman, Hilbert rings and the Hilbert Nullstellensatz, Math. Z., 54 (1951), 136- 140.
  • [4] A. Grothendieck, Elements de Geometric Algebrique IV (Troisieme Partie), Publ. Math. I. H. E. S., No. 28, 1966.
  • [5] W. Heinzer, Hilbert integral domains with maximal ideals of preassigned height, J. Alg., 29 (1974), 229-231.
  • [6] W. Krull, Jacobsonsche Ringe, Hilbertscher Nullstellensatz,Dimensionstheorie, Math. Z., 54 (1951), 354-387.
  • [7] S. McAdam, Saturated chains in noetherian rings, Indiana Univ. Math. J., 23 (1974), 719-728.
  • [8] P. Quartararo and H. S. Butts, Finiteunions of ideals and modules, Proc. Amer. Math. Soc., 52 (1975), 91-96.
  • [9] L. J. Ratliff, Characterization of catenary rings, Amer. J. Math., 93 (1971), 1070-1108.
  • [10] L. J. Ratliff, Hubert rings and the chain condition for prime ideals, J. Reine Angew. Math., 283/284 (1976), 154-163.
  • [11] L. G. Roberts, An example of a Hubert ring with maximal ideals of different height, Proc. Amer. Math. Soc., 37 (1973), 425-426.
  • [12] J.-P. Serre, Geometric algebrique et geometric analytique, Ann. Inst. Fourier Grenoble, 6, 1955-1956, 1-42.