Hiroshima Mathematical Journal

A finite-difference method on a Riemannian manifold

Hisao Mizumoto

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 10, Number 1 (1980), 11-53.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206134575

Digital Object Identifier
doi:10.32917/hmj/1206134575

Mathematical Reviews number (MathSciNet)
MR558846

Zentralblatt MATH identifier
0447.53036

Subjects
Primary: 58A14: Hodge theory [See also 14C30, 14Fxx, 32J25, 32S35]
Secondary: 39A12: Discrete version of topics in analysis

Citation

Mizumoto, Hisao. A finite-difference method on a Riemannian manifold. Hiroshima Math. J. 10 (1980), no. 1, 11--53. doi:10.32917/hmj/1206134575. https://projecteuclid.org/euclid.hmj/1206134575


Export citation

References

  • [1] Ahlfors, L. V., and L. Sario, Riemann surfaces. Princeton University Press (1960).
  • [2] Alexandroff, P., and H. Hopf, Topologie I. Springer (1935).
  • [3] Blanc, C, Les reseaux Riemanniens. Comm. Math. Helv. 13 (1940), 54-67.
  • [4] Courant, R., K. Friedrichs and H. Lewy, Uber die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100 (1928), 32-74.
  • [5] Dodziuk, J., Finite-difference approach to the Hodge theory of harmonic forms. Amer. J. Math. 98 (1976), 79-104.
  • [6] Eckmann, B., Harmonische Funktionen und Randwertaufgaben in einem Komplex. Comm. Math. Helv. 17 (1945), 240-255.
  • [7] Garbielov, A. M., I. M. GeFfand and M. V. Losik, Combinatorial computation of characteristic classes. Translated from FunktsionaPnyi Analyz i Ego Prilozheniya 9 (1975), 12-28.
  • [8] Kodaira K., Harmonic fields in Riemannian manifolds (Generalized potential theory). Ann. Math., 50 (1949), 587-665.
  • [9] Lelong-Ferrand, J., Representation conforme et transformations a integrate de Dirichlet bornee. Gauthier-Villars, Paris (1955).
  • [10] Mizumoto, H., A finite-difference method on a Riemann surface. Hiroshima Math. J. 3 (1973), 277-332.
  • [11] Mizumoto, H., On harmonic difference forms on a manifold. Kodai Math. Sem. Rep. 27 (1976), 257-270.
  • [12] Munkres, J. R., Elementary differential topology. Princeton Univ. Press (1963).
  • [13] Patodi, V. K., Riemannian structures and triangulations of manifolds. Proc. Internat. Congr. Math. 2 (Vancouver, 1974), 39-43.
  • [14] de Rham, G., Varietes differentiables. Hermann (1955).