Hiroshima Mathematical Journal

On strong oscillation of retarded differential equations

Manabu Naito

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 11, Number 3 (1981), 553-560.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206133990

Digital Object Identifier
doi:10.32917/hmj/1206133990

Mathematical Reviews number (MathSciNet)
MR635038

Zentralblatt MATH identifier
0488.34064

Subjects
Primary: 34K15

Citation

Naito, Manabu. On strong oscillation of retarded differential equations. Hiroshima Math. J. 11 (1981), no. 3, 553--560. doi:10.32917/hmj/1206133990. https://projecteuclid.org/euclid.hmj/1206133990


Export citation

References

  • [1] T. A. Chanturiya, Integral criteria for the oscillation of solutions of high-order differential equations I, II, Differential Equations, 16 (1980), 297-306, 392-400.
  • [2] W. B. Fite, Concerning the zeros of the solutions of certain differential equations, Trans. Amer. Math. Soc., 19 (1918), 341-352.
  • [3] R. Grimmer, Comparison theorems for third and fourth-order linear equations, J. Differential Equations, 25 (1977), 1-10.
  • [4] E. Hille, Non-oscillation theorems, Trans. Amer. Math. Soc., 64 (1948), 234-252.
  • [5] I. T. Kiguradze, Oscillation properties of solutions of certain ordinary differential equations, Soviet Math. Dokl., 3 (1962), 649-652.
  • [6] D. L. Lovelady, Oscillation and even order linear differential equations, Rocky Mountain J. Math., 6 (1976), 299-304.
  • [7] D. L. Lovelady, Oscillation and a class of linear delay differential equations, Trans. Amer. Math. Soc., 226 (1977), 345-364.
  • [8] W. E. Mahfoud, Comparison theorems for delay differential equations, Pacific J. Math., 83(1979), 187-197.
  • [9] Z. Nehari, Oscillation criteria for second-order linear differential equations, Trans. Amer. Math. Soc., 85 (1957), 428-445.
  • [10] H. Onose, A comparison theorem and the forced oscillation, Bull. Austral. Math. Soc., 13 (1975), 13-19.
  • [11] C. A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations, Academic Press, 1968.