Hiroshima Mathematical Journal

Derivation of the Boltzmann equation from particle dynamics

Kōhei Uchiyama

Full-text: Open access

Article information

Hiroshima Math. J., Volume 18, Number 2 (1988), 245-297.

First available in Project Euclid: 21 March 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 82A40
Secondary: 35Q20: Boltzmann equations 60J25: Continuous-time Markov processes on general state spaces 76P05: Rarefied gas flows, Boltzmann equation [See also 82B40, 82C40, 82D05]


Uchiyama, Kōhei. Derivation of the Boltzmann equation from particle dynamics. Hiroshima Math. J. 18 (1988), no. 2, 245--297. doi:10.32917/hmj/1206129724. https://projecteuclid.org/euclid.hmj/1206129724

Export citation


  • [1] Aizenman, M., A sufficient condition for the avoidance of sets by measure preserving flows in R", Duke Math. J. 45 (1978), 809-814.
  • [2] Alexander, K., The infinite hard sphere system, Ph. D. Thesis, Dept. Math. Univ. of California at Berkeley (1975).
  • [3] Billingsley, P., Convergence of Probability Measures, Wiley, New York (1968).
  • [4] Cercignani, C, On the Boltzmann Equation for Rigid Spheres, Transport Th. and Stat. Phys. 2(1972), 211-225.
  • [5] Grad, H., Principles of the kinetic theory of gases, Handbuch der Physik 12, Flgge, ed., Springer, Berlin, (1958), 205-294.
  • [6] Illner, R., and Pulvirenti, M., Gloval validity of the Boltzmann equation for a twodimensional rare gas in vacuum, Commun. Math. Phys. 105 (1986), 189-203.
  • [7] Kac, M., Foundation of kinetic theory, Proceedings of 3rd Berkeley Symposium on Math. Stat. and Prob., Vol. 3, (1956), 171-197.
  • [8] King, F., BBGKY hierarchy for positive potentials, Ph. D. Thesis, Dep. of Math., Univ. of California at Berkeley (1975).
  • [9] Lanford III, O. E., Time evolution of large classical systems, in "Dynamical Systems and Applications", Lecture Notes in Phys. 38 (1975), 1-111.
  • [10] Lanford III, O. E., On a derivation of the Boltzmann equation, in "international Conference on Dynamical Systems in Mathematical Physics", Soc. Math. France, Asterisque 40 (1976), 117-137.
  • [11] Lebowitz, J. L. and Spohn, H., On the time evolution of macroscopic systems, Comm. Pure and Appl. Math. 36 (1983), 595-613.
  • [12] McKean, H. P., Propagation of chaos for a class of non-linear parabolic equations, Lecture Series in Differential Equations 7, Catholic Univ. (1967), 41-57.
  • [13] Takahashi, Y., On a class of Bogoliubov equations and the time evolution in classical statistical mechanics, in "Random field", Vol. II, J. Fritz, J. L. Lebowitz and D. J. Szasz, ed., North-Holland Amsterdam-Oxford-New York (1979), 1033-1056.
  • [14] Spohn, H., Kinetic equations from Hamiltonian dynamics: Markov limits, Reviews of Modern Physics 53 (1980), 569-615.
  • [15] Spohn, H., On the integrated form of the BBGKY hierarchy for hard spheres, preprint
  • [16] Uchiyama, K., On the Boltzmann-Grad limit for the Broadwell model of the Boltzmann equation, J. Stat. Phys. 52 (1988).