Hiroshima Mathematical Journal

Geometry of minimum contrast

Shinto Eguchi

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 22, Number 3 (1992), 631-647.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206128508

Mathematical Reviews number (MathSciNet)
MR1194056

Zentralblatt MATH identifier
0780.53015

Subjects
Primary: 62B10: Information-theoretic topics [See also 94A17]
Secondary: 62A99: None of the above, but in this section

Citation

Eguchi, Shinto. Geometry of minimum contrast. Hiroshima Math. J. 22 (1992), no. 3, 631--647. https://projecteuclid.org/euclid.hmj/1206128508


Export citation

References

  • [1] S.-I. Amari, Differential-Geometrical methods in Statistics, Lecture Note in Statistics. 28, Springer Verlag (1985).
  • [2] S. Eguchi, A differential geometric approach to statistical inference on the basis of contrast functions, Hiroshima Math. J. 15 (1985), 341-391.
  • [3] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Wiley, New York (1963).
  • [4] S. L. Lauritzen, Statistical Manifolds, Institute of Mathematical Statistics-Monograph series. 10 (1987), 96-163.
  • [5] O. Loos, Symmetric space, Benjamine, New York (1969).
  • [6] H. Nagaoka and S. -I.Amari, Differential geometry of smooth families of probability distributions, METR 82-7, University of Tokyo (1982).