Hiroshima Mathematical Journal

Congruences between binomial coefficients $\binom {2f}f$ and Fourier coefficients of certain $\eta$-products

Tsuneo Ishikawa

Full-text: Open access

Article information

Hiroshima Math. J., Volume 22, Number 3 (1992), 583-590.

First available in Project Euclid: 21 March 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11F20: Dedekind eta function, Dedekind sums
Secondary: 11B65: Binomial coefficients; factorials; $q$-identities [See also 05A10, 05A30] 11F30: Fourier coefficients of automorphic forms


Ishikawa, Tsuneo. Congruences between binomial coefficients $\binom {2f}f$ and Fourier coefficients of certain $\eta$-products. Hiroshima Math. J. 22 (1992), no. 3, 583--590. doi:10.32917/hmj/1206128505. https://projecteuclid.org/euclid.hmj/1206128505

Export citation


  • [1] A.O. L.Atkin and H. P. F. Swinnerton-Dyer, Modular forms on noncongruence subgroups, "Combinatorics", 1-25, Providence, Amer. Math. Soc. 1979.
  • [2] F. Beukers, Another congruences of the Apery numbers, J. Number Theory 25 (1987), 201-210.
  • [3] T. Honda, Invariant differentials and L-function. Reciprocity law for quadratic fields and elliptic curves over Q, Rend. Sem. Math. Univ. Padova 49 (1973), 322-335.
  • [4] R. H. Hudson and K. S. Williams, Binomial coefficients and Jacobi sums, Trans. Amer. Math. Soc. 281 (1984), 431-505.
  • [5] S. Lang, Introduction to modular forms, G.M.W. 222, Springer, 1976.
  • [6] J. Stienstra and F. Beukers, On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3 surfaces, Math. Ann. 271 (1985), 269-304.