Hiroshima Mathematical Journal

Continuity properties of potentials and Beppo-Levi-Deny functions

Yoshihiro Mizuta

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 23, Number 1 (1993), 79-153.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206128379

Digital Object Identifier
doi:10.32917/hmj/1206128379

Mathematical Reviews number (MathSciNet)
MR1211771

Zentralblatt MATH identifier
0782.31004

Subjects
Primary: 31B15: Potentials and capacities, extremal length
Secondary: 31B25: Boundary behavior

Citation

Mizuta, Yoshihiro. Continuity properties of potentials and Beppo-Levi-Deny functions. Hiroshima Math. J. 23 (1993), no. 1, 79--153. doi:10.32917/hmj/1206128379. https://projecteuclid.org/euclid.hmj/1206128379


Export citation

References

  • [1] H. Aikawa, Tangential behavior of Green potentials and contractive properties of //-potentials, Tokyo J. Math. 12 (1986), 221-245.
  • [2] M. Brelot, Element de la theorie classique du potentiel, 4e edition, Centre de documentation Universitaire, Paris, 1969.
  • [3] J. Deny and J. L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier 5 (1955), 305-370.
  • [4] S. J. Gardiner, Local growth properties of superharmonic functions, Arch. Math. 54 (1990), 52-60.
  • [5] T. Kurokawa and Y. Mizuta, On the order at infinity of Riesz potentials, Hiroshima Math. J. 9 (1979), 533-545.
  • [6] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand. 8 (1970), 255-292.
  • [7] N. G. Meyers, Continuity properties of potentials, Duke Math. J. 42 (1975), 157-166.
  • [8] Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J. 4 (1974), 375-396.
  • [9] Y. Mizuta, On the existence of boundary values of Beppo Levi functions defined in the upper half space of Rn Hiroshima Math. J. 6 (1976), 61-72,
  • [10] Y. Mizuta, On the limits of p-precise functions along lines parallel to the coordinate axes of Rn, Hiroshima Math. J. 6 (1976), 353-357.
  • [11] Y. Mizuta, On the radial limits of potentials and angular limits of harmonic functions, Hiroshima Math. J. 8 (1978), 415-437.
  • [12] Y. Mizuta, Existence of various boundary limits of Beppo Levi functions of higher order, Hiroshima Math. J. 9 (1979), 717-745.
  • [13] Y. Mizuta, Boundary limits of Green potentials of order, Hiroshima Math. J. 11 (1981), 111-123.
  • [14] Y. Mizuta, On the behavior of potentials near a hyperplane, Hiroshima Math. J. 13 (1983), 529-542.
  • [15] Y. Mizuta, Study of the behavior of logarithmic potentials by means of logarithmically thin sets, Hiroshima Math. J. 14 (1984), 227-246.
  • [16] Y. Mizuta, On the existence of limits along lines of Beppo Levi functions, Hiroshima Math. J. 16 (1986), 387-404.
  • [17] Y. Mizuta, Boundary behavior of /7-precise functions on a half space of Rn, Hiroshima Math. J. 18 (1988), 73-94.
  • [18] Y. Mizuta, Continuity properties of Riesz potentials and boundary limits of Beppo Levi functions, Math. Scand. 63 (1988), 238-260.
  • [19] Y. Mizuta, Integral representations of Beppo Levi functions and the existence of limits at infinity, Hiroshima Math. J. 19 (1989), 259-279.
  • [20] A. Nagel, W. Rudin and J. H. Shapiro, Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math. 116 (1982), 331-360.
  • [21] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture Notes, Hiroshima University, 1973.
  • [22] Yu. G. Reshetnyak, The concept of capacity in the theory of functions with generalized derivatives, Siberian Math. J. 10 (1969), 818-842.
  • [23] P. J. Rippon, On the boundary behaviour of Green potentials, Proc. London Math. Soc. 38 (1979), 461-480.
  • [24] L. Schwartz, Theorie des distributions, Hermann, Paris, 1966.
  • [25] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.
  • [26] H. Wallin, Continuous functions and potential theory, Ark. Mat. 5 (1963), 55-84.
  • [27] J.-M.G. Wu, //-densities and boundary behaviors of Green potentials, Indiana Univ. Math. J. 28 (1979), 895-911.
  • [28] A. Zygmund, On a theorem of Marcinkiewiez concerning interpolation of operators, J. Math. Pures Appl. 35 (1956), 223-248.