Hiroshima Mathematical Journal

Admissibility of some tests, multiple decision procedures and classification procedures in multivariate analysis

Nobuo Nishida

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 23, Number 2 (1993), 365-416.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206128258

Digital Object Identifier
doi:10.32917/hmj/1206128258

Mathematical Reviews number (MathSciNet)
MR1228577

Zentralblatt MATH identifier
0796.62051

Subjects
Primary: 62C15: Admissibility
Secondary: 62H15: Hypothesis testing 62H30: Classification and discrimination; cluster analysis [See also 68T10, 91C20]

Citation

Nishida, Nobuo. Admissibility of some tests, multiple decision procedures and classification procedures in multivariate analysis. Hiroshima Math. J. 23 (1993), no. 2, 365--416. doi:10.32917/hmj/1206128258. https://projecteuclid.org/euclid.hmj/1206128258


Export citation

References

  • [1] T. W. Anderson, Statistical inference for covariance matrices with linear structure. Multivariate Analysis II (P. R. Krishnaiah, ed), Academic Press, New York (1969), 55-66.
  • [2] T. W. Anderson, Estimation of covariance matrices which are linear combinations or whose inverse are linear combinations of given matrices, Essays Prob. Statist. (R. C. Bose and Others, eds), Univ. North Carolina Press, Chapel Hill (1970), 1-24.
  • [3] T. W. Anderson, An Introduction to Multivariate Statistical Analysis (2nd Ed.), John Wiley and Sons, New York, 1984.
  • [4] T. W. Anderson and S. Das Gupta, A monotonicity property of the power functions of some tests of the equality of two covariance matrices, Ann. Math. Statist. 35 (1964), 1059-1063.
  • [5] T. W. Anderson and A. Takemura, A new proof of admissibility of tests in multivariate analysis, J. Multivariate Anal. 12 (1982), 457-468.
  • [6] R. E. Bechhofer, A single sample multiple decision procedure for ranking means of normal populations with known variances, Ann. Math. Statist. 25 (1954), 16-39.
  • [7] R. E. Bechhofer, C. W. Dunnett and M. Sobel, A two-sample multiple decision procedure for ranking means of noral populations with a common unknown variance, Biometrika 41 (1954), 170-176.
  • [8] R. E. Bechhofer and M. Sobel, A single sample multiple decision procedure for ranking variances of normal populations, Ann. Math. Statist. 25 (1954), 273-289.
  • [9] A. Birnbaum, Charactrization of complete classes of tests of some multiparametric hypotheses, with applications to likelihood ratio tests, Ann. Math. Statist. 26 (1955), 21-36.
  • [10] R. D. Bock and R. E. Bargmann, Analysis of covariance structures, Psychometrika, 31 (1966), 507-534.
  • [11] C. W. Dunnett, On selecting the largest of k normal populations means, J. Roy. Statist. Soc. B 22 (1960), 1-40.
  • [12] M. L. Eaton, Some optimum properties of ranking procedures, Ann. Math. Statist. 38 (1967), 124-137.
  • [13] M. N. GHOSH, On the admissibility of some tests of MANOVA, Ann. Math. Statist. 35 (1964), 789-794.
  • [14] W. J. Hall, The most economical character of some Bechhofer and Sobel decision rules, Ann. Math. Statist. 30 (1959), 964-969.
  • [15] M. Kanazawa, ML classfication distances and rules in the normal populations when covariance matrices are unequal, J. Japan Statist. Soc. 16 (1986), 25-36.
  • [16] J. Kiefer and R. Schwartz, Admissible Bayes character of T2 -, R2-, and other fully invariant tests for classical multivariate normal problems, Ann. Math. Statist. 36 (1965), 747-770.
  • [17] P. R. Krishnaiah and J. C. Lee, On covariance structures, Sankhya A, 38 (1974), 357-371.
  • [18] K. V. Mardia, J. T. Kent and J. M. Bibby, Multivariate Analysis, Academic Press, 1979.
  • [19] N. Nishida, A note on the admissible tests and classifications in multivariate analysis, Hiroshima Math. J. 1 (1971), 427-434.
  • [20] N. Nishida, The admissibility of tests for the equality of mean vectors and covariance matrices, Hiroshima Math. J. 2 (1972), 215-220.
  • [21] N. Nishida, Admissibility of classification procedures in multivariate analysis I, Bull. Hiroshima Women's Univ. 12 (1976), 5-9.
  • [22] N. Nishida, Admissibility of classification procedures in multivariate analysis II, Bull. Hiroshima Women's Univ. 13 (1977), 33-37.
  • [23] N. Nishida, Admissible selection procedures in multivariate analysis, Bull. Hiroshima Women's Univ. 24 (1988), 69-74.
  • [24] N. Nishida, Admissibilityof the likelihood ratio test for linear constraints, J. Japan Statist. Soc. 20 (1990), 43-49.
  • [25] I. Olkin and S. J. Press, Testing and estimation for a circular stationary model, Ann. Math. Statist. 40 (1969), 1358-1373.
  • [26] E. Paulson, A multiple decision procedure for certain problems in analysis of variance, Ann. Math. Statist. 20 (1949), 95-98.
  • [27] C. R. Rao, Some problems involving linear hypotheses in multivariate analysis, Biometrika, 46 (1959), 49-58.
  • [28] S. N. Roy and R. Gnanadeskian, Two-sample comparisons of dispersion matrices for alternatives of intermediate specificity, Ann. Math. Statist. 33 (1962), 432-438.
  • [29] R. Schwartz, Admissible tests in multivariate analysis of variance, Ann. Math. Statist. 38 (1967), 698-710.
  • [30] K. C. Seal, On a class of decision procedures for ranking means of normal populations, Ann. Math. Statist. 26 (1955), 387-398.
  • [31] M. Siotani, T. Hayakawa and Y. Fujikoshi, Modern Multivariate Statistical Analysis, American Sciences Press, 1985.
  • [32] J. N. Srivastava, On testing hypotheses regarding a class of covariance structure, Psychometrika, 31 (1966), 147-164.
  • [33] C. Stein, The admissibility of Hotelling's 2 -test, Ann. Math. Statist. 27 (1956), 616-623.
  • [34] S. Zacks, The Theory of Statistical Inference, John Wiley and Sons, New York, 1971.