Hiroshima Mathematical Journal

Any statistical manifold has a contrast function---on the $C\sp 3$-functions taking the minimum at the diagonal of the product manifold

Takao Matumoto

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 23, Number 2 (1993), 327-332.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206128255

Mathematical Reviews number (MathSciNet)
MR1228574

Zentralblatt MATH identifier
0796.53036

Subjects
Primary: 53B99: None of the above, but in this section
Secondary: 62B10: Information-theoretic topics [See also 94A17] 62F99: None of the above, but in this section

Citation

Matumoto, Takao. Any statistical manifold has a contrast function---on the $C\sp 3$-functions taking the minimum at the diagonal of the product manifold. Hiroshima Math. J. 23 (1993), no. 2, 327--332. https://projecteuclid.org/euclid.hmj/1206128255


Export citation

References

  • [1] S.-I. Amari, Differential-geometrical Methods in Statistics, Lecture Notes in Statistics 28, Springer-Verlag, Berlin, 1985.
  • [2] S.-I. Amari, O. E. Barndorff-Nielsen, R. E. Kass, S. L. Lauritzen and C. R. Rao, Differential Geometry in Statistical Inferences, IMS Lecture Notes-Monograph Series, 10, Institute of Mathematical Statistics, Hayward, 1987.
  • [3] S. Eguchi, Geometry of minimum contrast, Hiroshima Math. J. 22 (1992), 631-647.
  • [4] S. Kobayashi and K. Nomizu, Foundation of Differential Geometry, Interscience Publishers, New York, 1963.
  • [5] S. L. Lauritzen, Statistical manifolds, in Differential Geometry in Statistical Inferences, [2] above, 1987, 163-216.
  • [6] H. Rund, The Differential Geometry of Finsler Spaces, Grund. Math. Wiss., Springer-Verlag, Berlin, 1959.
  • [7] H. Shima, Hessian manifolds and convexity, in Manifolds and Lie Groups, Progress in Mathematics vol. 14, Birkhauser, Boston, 1981, 385-392.