Hiroshima Mathematical Journal

Bounded solutions with prescribed numbers of zeros for the Emden-Fowler differential equation

Yūki Naito

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 24, Number 1 (1994), 177-220.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206128140

Digital Object Identifier
doi:10.32917/hmj/1206128140

Mathematical Reviews number (MathSciNet)
MR1265600

Zentralblatt MATH identifier
0805.34028

Subjects
Primary: 34C10: Oscillation theory, zeros, disconjugacy and comparison theory
Secondary: 34C11: Growth, boundedness

Citation

Naito, Yūki. Bounded solutions with prescribed numbers of zeros for the Emden-Fowler differential equation. Hiroshima Math. J. 24 (1994), no. 1, 177--220. doi:10.32917/hmj/1206128140. https://projecteuclid.org/euclid.hmj/1206128140


Export citation

References

  • [1] G. Bianchi and H. Egnell, An ODE approach to the equation u + /£w (n+2)/(' 1 2)= o in £", Math. Z. 210 (1992), 137-166.
  • [2] A. Castro and A. Kurepa, Infinitely many radially symmetric solutions to a superlinear Dirichlet problem in a ball, Proc; Amer. Math. Soc.101 (1987), 57-64.
  • [3] K. S. Cheng and J. L. Chern, Existence of positive entire solutions of some semilinear elliptic equations, J. Differential Equations 98 (1992), 169-180.
  • [4] C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation of solutions of generalized Emden-Fowler equations, Trans. Amer. Math. Soc.167 (1972), 399-434.
  • [5] C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation theorems for second order ordinary differential equations, Funkcial. Ekvac. 15 (1972), 119-130.
  • [6] H. E. Gollwitzer, Nonoscillation theorems for a nonlinear differential equation, Proc. Amer. Math. Soc. 26 (1970), 78-84.
  • [7] P. Hartman, On boundary value problems for superlinear second order differential equations, J. Differential Equations, 26 (1977), 37-53.
  • [8] J. W. Heidel and D. B. Hinton, The existence of oscillatory solutions for a nonlinear differential equation, SIAM J. Math. Anal. 3 (1972), 344-351.
  • [9] J. W. Hooker, Existence and oscillation theorems for a class of non-linear second order differential equations, J. Differential Equations 5 (1969), 283-306.
  • [10] R. Kajikiya, Radially symmetric solutions of semilinear elliptic equations, existence and Sobolev estimates, Hiroshima Math. J. 21 (1991), 111-161.
  • [11] I. T. Kiguradze, On the conditions of oscillation of solutions of the equation u" + fl()|wsgn = 0, Casopis Pest. Mat. 87 (1962), 492-495. (Russian)
  • [12] T. Kusano and M. Naito, Positive entire solutions of superlinear elliptic equations, Hiroshima Math. J. 16 (1986), 361-366.
  • [13] T. Kusano and M. Naito, Oscillatory theory of entire solutions of second order superlinear elliptic equations, Funkcial. Ekvac. 30 (1987), 269-382.
  • [14] M. K. Kwong and J. S. W. Wong, Nonoscillation theorems for a second order sublinear ordinary differential equation, Proc. Amer. Math. Soc.87 (1983), 467-474.
  • [15] K.Nagasaki, Radial solutions for du+ x f u p l u = Q on the unit ball in R", J. Fac.Sci. Univ. Tokyo Sect. IA, Math. 36 (1989), 211-232.
  • [16] M. Naito, Oscillatory theory for Emden-Fowler ordinary differential equations, Sugaku 37 (1985), 144-160. (Japanese)
  • [17] M. Naito and Y. Naito, Radial entire solutions of a class of sublinear elliptic equations, Adv. Math. Sci.Appl. 2 (1993), 231-243.
  • [18] M. Naito and Y. Naito, Solutions with prescribed numbers of zeros for nonlinear second order differential equations, Funkcial. Ekvac. (to appear).
  • [19] Z. Nehari, Characteristic values associated with a class of nonlinear second-order differential equations, Acta Math. 105 (1961), 141-175.
  • [20] M. Struwe, Superlinear elliptic boundary value problems with rotational symmetry, Arch. Math. 39 (1982), 233-240.
  • [21] A. Tal, Eigenfunctions for a class of nonlinear differential equations, J. Differential Equations 3 (1967), 112-134.
  • [22] J. S. W. Wong, On the generalized Emden-Fowler equation, SIAM Rev. 17 (1975), 339-360.
  • [23] E. Yanagida and S. Yotsutani, Existence of nodal fast-decay solutions to Au + Kd^Dlw^"1 u = 0 in R", (preprint).