Hiroshima Mathematical Journal

On the primary decomposition of differential ideals of strongly Laskerian rings

Mamoru Furuya

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 24, Number 3 (1994), 521-527.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206127924

Digital Object Identifier
doi:10.32917/hmj/1206127924

Mathematical Reviews number (MathSciNet)
MR1309137

Zentralblatt MATH identifier
0839.16032

Subjects
Primary: 13B10: Morphisms

Citation

Furuya, Mamoru. On the primary decomposition of differential ideals of strongly Laskerian rings. Hiroshima Math. J. 24 (1994), no. 3, 521--527. doi:10.32917/hmj/1206127924. https://projecteuclid.org/euclid.hmj/1206127924


Export citation

References

  • [1] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, Mass., 1969.
  • [2] N. Bourbaki, Algebre commutative, Chap. 3-4, Herman, Paris, 1961.
  • [3] J. W. Brewer, Power series over commutative rings, Lecture Notes in Pure and Applied Mathematics, 64, Marcel Dekker Ins. New York and Basel, 1981.
  • [4] W. C. Brown and W. E. Kuan, Ideals and higher derivations in commutative rings, Canad. J. Math., 24 (1972), 400-415.
  • [5] M. Furuya, Notes on going-up theorem and going-down theorem on differential ideals, TRU Math., 21-2 (1985), 231-239.
  • [6] N. Heerema, Derivations and embeddings of a field in its power series ring, Proc. Amer. Math. Soc, 11 (1960), 188-194.
  • [7] W. Heinzer and D. Lantz, The Laskerian property in commutative rings, J. Algebra, 72-1 (1981), 101-114.
  • [8] H. Matsumura, Integrable derivations, Nagoya Math. J., 87 (1982), 227-245.
  • [9] M. Nagata, Local rings, New York, 1962.
  • [10] S. Sato, On the primary decomposition of differential ideals, Hiroshima Math. J., 6 (1976), 55-59.
  • [11] A. Seidenberg, Differential ideals in rings of finitely generated type, Amer. J. Math., 89 (1967), 22-42.