Hiroshima Mathematical Journal

Simultaneous confidence procedures for multiple comparisons of mean vectors in multivariate normal populations

Takashi Seo

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 25, Number 2 (1995), 387-422.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206127718

Digital Object Identifier
doi:10.32917/hmj/1206127718

Mathematical Reviews number (MathSciNet)
MR1336906

Zentralblatt MATH identifier
0862.62063

Subjects
Primary: 62H12: Estimation
Secondary: 62F25: Tolerance and confidence regions 62H10: Distribution of statistics 62J15: Paired and multiple comparisons

Citation

Seo, Takashi. Simultaneous confidence procedures for multiple comparisons of mean vectors in multivariate normal populations. Hiroshima Math. J. 25 (1995), no. 2, 387--422. doi:10.32917/hmj/1206127718. https://projecteuclid.org/euclid.hmj/1206127718


Export citation

References

  • [1] L. D. Brown, A note on the Tukey-Kramer procedure for pairwise comparisons of correlated means, In Design of Experiments: Ranking and Selection (Essays in Honor of Robert E. Bechhofer), (T. J. Santner and A. C. Tamhane, eds.), Marcel Dekker, New York, 1984, 1-6.
  • [2] C. W. Dunnett, Pairwise multiple comparisons in homogeneous variance, unequal sample size case, J. Amer. Statist. Assoc., 75 (1980), 789-795.
  • [3] Y. Fujikoshi, Asymptotic expansions of the distributions of test statistic in multivariate analysis, J. Sci. Hiroshima Univ., A-I, 34 (1970), 73-144.
  • [4] Y. Fujikoshi, Comparison of powers of a class of tests for multivariate linear hypothesis and independence, J. Multivariate Anal., 26 (1988), 48-58,
  • [5] Y. Fujikoshi, Asymptotic expansions for the standardized and Studentized estimates in the growth curve model, J. Statist. Plann. Inf., 36 (1993), 165-174.
  • [6] J. E. Grizzle and D. M. Allen, Analysis of growth and dose response curves, Biometrics, 25 (1969), 357-381.
  • [7] H. L. Harter, Tables of range and Studentized range, Ann. Math. Statist., 31 (1960), 1122-1147.
  • [8] A. J. Hayter, A proof of the conjecture that the Tukey-Kramer multiple comparisons procedure is conservative, Ann. Statist., 12 (1984), 61-75.
  • [9] A. J. Hayter, Pairwise comparisons of generally correlated means, J. Amer. Statist. Assoc., 84 (1989), 208-213.
  • [10] Y. Hochberg, The distribution of the range in general unbalanced models, American Statistician, 28 (1974), 137-138.
  • [11] Y. Hochberg and A. C. Tamhane, Multiple Comparison Procedures, Wiley, New York, 1987.
  • [12] H. Hotelling and L. R. Frankel, Transformation of statistics to simplify their distribution, Ann. Math. Statist., 9 (1938), 87-96.
  • [13] G. S. James, Tests of linear hypotheses in univariate and multivariate analysis when the ratios of the population variances are unknown, Biometrika, 41 (1954), 19^43.
  • [14] T. Kanda, Growth curve model with covariance structures, Hiroshima Math. J., 24 (1994), 135-176.
  • [15] C. G. Khatri, A note on a MANOVA model applied to problems in growth curve, Ann. Inst. Statist. Math., 18 (1966), 75-86.
  • [16] C. Y. Kramer, Extension of multiple range tests to group means with unequal number of replications, Biometrics, 12 (1956), 307-310.
  • [17] C. Y. Kramer, Extension of multiple range tests to group correlated adjusted means, Biometrics, 13 (1957), 13-18.
  • [18] P. R. Krishnaiah, Simultaneous test procedures under general MANOVA models, Multivariate Analysis-II (P. R. Krishnaiah ed.), Academic Press, New York, 1969, 121-143.
  • [19] P. R. Krishnaiah, Some developments on simultaneous test procedures, Developments in Statistics, Vol. 2 (P. R. Krishnaiah, ed.), North-Holland, Amsterdam, 1979, 157-201.
  • [20] P. R. Krishnaiah and J. M. Reising, Multivariate multiple comparisons, Encyclopedia of Statistical Sciences, Vol. 6 (S. Kotz and N. L. Johnson, eds.), Wiley, New York, 1985, 88-95.
  • [21] F. J. Lin, E. Seppanen and E. Uusipaikka, On pairwise comparisons of the componentsof the mean vector in multivariate normal distribution, Commun. Statist., A19 (1990), 395-411.
  • [22] R. G. Miller, Developments in multiple comparisons 1966-1976, J. Amer. Statist. Assoc., 72 (1977), 779-788.
  • [23] R. G. Miller, Simultaneous Statistical Inference, 2nd ed., Springer-Verlag, New York, 1981.
  • [24] R. G. Miller, Multiple comparisons, Encyclopedia fo Statistical Sciences, Vol. 5 (S. Kotz and N. L. Johnson, eds.), Wiley, New York, 1985, 679-689.
  • [25] D. F. Morrison, Multivariate Statistical Methods, McGraw-Hill, New York, 1976.
  • [26] R. F. Potthoff and S. N. Roy, A generalized multivariate analysis of variance model useful especially for growth curve problems, Biometrika, 51 (1964), 313-326.
  • [27] S. N. Roy and R. C. Bose, Simultaneous confidence interval estimation. Ann. Math. Stat., 24 (1953), 513-536.
  • [28] T. Seo, Approximation to upper percentiles of the statistic for comparing of the components of mean vector, Tech. Rep. No. 316, Statistical Research Group, Hiroshima University, 1992.
  • [29] T. Seo and M. Siotani, The multivariate Studentized range and its upper percentiles, J. Japan Statist. 22 (1992). 123-137.
  • [30] T. Seo and M. Siotani, Approximation to the upper percentiles of 7^ax-type statistics, In Statistical Sciences and Data Analysis, (K. Matusita, M. L. Puri, T. Hayakawa et al eds.), VSP, Utrecht, The Netherlands, 1993, 265-276.
  • [31] T. Seo, S. Mano and Y. Fujikoshi, A generalized Tukey conjecture for multiple comparisons among mean vectors, J. Amer. Statist. Assoc., 89 (1994), 676-679.
  • [32] M. Siotani, The extreme value of the generalized distances of the individual points in the multivariate normal sample, Ann. Inst. Statist. Math., 10 (1959), 183-208.
  • [33] M. Siotani, Notes on multivariate confidence bounds. Ann. Inst. Statist. Math., 11 (1960), 167-182.
  • [34] M. Siotani, T. Hayakawa and Y. Fujikoshi, Modern Multivariate Statistical Analysis: A Graduate Course and Handbook, American Sciences Press, Ohio, 1985.
  • [35] J. W. Tukey, The problem of multiple comparisons, unpublished manuscript, 1953.
  • [36] B. L, Welch, The generalization of 'Student's' problem when several different population variances are involved, Biometrika, 34 (1947), 28-35.
  • [37] Z. Yamauti, (ed.) Statistical Tables and Formulas with Computer Applications JSA-1972, Japanese Standards Asociation (in Japanese), 1972.