Hiroshima Mathematical Journal

The polynomials on $w\sb 1$, $w\sb 2$ and $w\sb 3$ in the universal Wu classes

Toshio Yoshida

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 26, Number 1 (1996), 189-207.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206127497

Digital Object Identifier
doi:10.32917/hmj/1206127497

Mathematical Reviews number (MathSciNet)
MR1380433

Zentralblatt MATH identifier
0861.55021

Subjects
Primary: 55R40: Homology of classifying spaces, characteristic classes [See also 57Txx, 57R20]

Citation

Yoshida, Toshio. The polynomials on $w\sb 1$, $w\sb 2$ and $w\sb 3$ in the universal Wu classes. Hiroshima Math. J. 26 (1996), no. 1, 189--207. doi:10.32917/hmj/1206127497. https://projecteuclid.org/euclid.hmj/1206127497


Export citation

References

  • [1] D. M. Davis, The antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc., 44 (1974), 235-236.
  • [2] H. Ichikawa and T. Yoshida, Some monomials in the universal Wu classes, Hiroshima Math. J., 20 (1990), 127-136.
  • [3] J. W. Milnor, On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds, Topology, 3 (1965), 223-230.
  • [4] J. W. Milnor and J. D. Stasheff, Characteristic classes, Annals of Mathematics Studies No. 76, Princeton Univ. Press, Princeton, New Jersey and Univ. of Tokyo Press, Tokyo, 1974.
  • [5] H. Osborn, Vector bundles, vol. 1, Foundations and Stiefel-Whitney classes, Academic Press, New York-London, 1982.
  • [6] N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Annals of Mathematics Studies No. 50, Princeton Univ. Press, Princeton, New Jersey, 1962.
  • [7] R. E. Stong, Cobordism and Stiefel-Whitney numbers, Topology, 4 (1965), 241-256.
  • [8] R. E. Stong, Notes on cobordism theory, Princeton Univ. Press, Princeton, New Jersey and Univ. of Tokyo Press, Tokyo, 1968.
  • [9] R. E. Stong and T. Yoshida, Wu classes, Proc. Amer. Math. Soc., 100 (1987), 352-354.
  • [10] J. Vrabec, Bordism, homology, and Stiefel-Whitney numbers, Postdiplom. Sem. Mat. 13, Drustvo Mat. Fiz. Astronom. SR Slovenije, Ljubljana, 1982.
  • [11] W.-T. Wu, Les i-carres dans une variete grassmannienne, C. R. Acad. Sci. Paris, 230 (1950), 918-920.
  • [12] T. Yoshida, Wu classes and unoriented bordism classes of certain manifolds, Hiroshima Math. J., 10 (1980), 567-596.
  • [13] T. Yoshida, Universal Wu classes, Hiroshima Math. J., 17 (1987), 489-493.