Hiroshima Mathematical Journal

Estimation and model selection in an extended growth curve model

Yasunori Fujikoshi and Kenichi Satoh

Full-text: Open access

Article information

Hiroshima Math. J. Volume 26, Number 3 (1996), 635-647.

First available in Project Euclid: 21 March 2008

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62H12: Estimation


Fujikoshi, Yasunori; Satoh, Kenichi. Estimation and model selection in an extended growth curve model. Hiroshima Math. J. 26 (1996), no. 3, 635--647. https://projecteuclid.org/euclid.hmj/1206127265.

Export citation


  • [1] H. Akaike, Information theory and an extension of the maximum likelihood principle, In: 2nd International Symposium on Information Theory, Eds. B. N. Petrov and F. Csaki, pp. 267-281, Akademia Kiado, Budapest, 1973.
  • [2] E. J. Bedrick and C. L. Tsai, Model selection for multivariate regression in small samples, Biometrics, 50 (1994), 226-231.
  • [3] V. M. Chinchilli and R. K. Elswick, A mixture of the MANOVA and GMANOVA models, Comm. Staist-Theor. Meth., 14 (12) (1985), 3075-3089.
  • [4] L. J. Gleser and I. Olkin, Linear models in multivariate analysis, Essays in Prob. Statist., (R. C. Bose and Others, eds.), 267-292, Univ. North Carolina Press, Chapel Hill, N.C., 1973.
  • [5] J. E. Grizzle and D. M. Allen, Analysis of growth and dose response curves, Biometrics, 25 (1969), 357-381.
  • [6] C. M. Hurvich and C. L. Tsai, Regression and times series model selection in small samples, Biometrka, 76 (1989), 297-307.
  • [7] T. Kariya, Testing in the multivariate general linear model, Kinokuniya, Tokyo, 1985.
  • [8] R. F. Potthoff and S. N. Roy, A generalized multivariate analysis of variance model useful especially for growth curve problems, Biometrika, 51 (1964), 313-327.
  • [9] M. Siotani, T. Hayakawa and Y. Fujikoshi, Modern Multivariate Statistical Analysis: A Graduate Course and Handbook, American Sciences, Ohio, 1985.
  • [10] N. Sugiura, Futher analysis of the data by Akaike's information criterion and the finite corrections, Commun. Statist-Theor. Meth., 7(1) (1978), 13-26.
  • [11] A. P. Verbyla and W. N. Venables, An extension of the growth curve model, Biometrika, 75 (1988), 129-138.