Hiroshima Mathematical Journal

Existence of Dirichlet infinite harmonic measures on the Euclidean unit ball

Mitsuru Nakai

Full-text: Open access

Article information

Hiroshima Math. J., Volume 26, Number 3 (1996), 605-621.

First available in Project Euclid: 21 March 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 31C45: Other generalizations (nonlinear potential theory, etc.)


Nakai, Mitsuru. Existence of Dirichlet infinite harmonic measures on the Euclidean unit ball. Hiroshima Math. J. 26 (1996), no. 3, 605--621. doi:10.32917/hmj/1206127263. https://projecteuclid.org/euclid.hmj/1206127263

Export citation


  • [1] E. Gagliardo, Caratterizzazione delle traccie sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Padova, 27 (1951), 284-305.
  • [2] J. Heinonen, T. Kilpenlainen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, Oxford-New York-Tokyo, 1993.
  • [3] M. Heins, On the Lindelf principle, Ann. Math., 61 (1955), 440-473.
  • [4] D. A. Herron and P. Koskela, Continuity of Sobolev functions and Dirichlet finite harmonic measures, Potential Analysis (to appear).
  • [5] O. Martio, Potential theory and quasiconformal mappings, pp. 55-63 in "Potential Theory" (ed. by M. Kishi), Walter de Gruyter and Co, Berlin, 1992.
  • [6] V. G. Maz'ya, On the continuity at the boundary point of solutions of quasi-linear elliptic equations, Vestnik Leningrad Univ. Math., 3 (1976), 225-242; English translation of Vestnik Leningrad. Univ., 25 (1970), 42-45 (Russian).
  • [7] C. Miranda, Partial Differential Equations of Elliptic Type, 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York, 1970.
  • [8] S. Mizohata, The Theory of Partial Differential Equations, Cambridge Univ. Press, London, 1973.
  • [9] M. Nakai, Existence of Dirichlet finite harmonic measures on Euclidean balls, Nagoya Math. J., 133 (1994), 85-125.
  • [10] M. Nakai, Existence of Dirichlet infinite harmonic measures on the unit disc, Nagoya Math. J, 138 (1995), 141-167.
  • [11] M. Ohtsuka, Extremal Length and Precise Functions (in preparation).