Hiroshima Mathematical Journal

An integral representation and fine limits at infinity for functions whose Laplacians iterated $m$ times are measures

Yoshihiro Mizuta

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 27, Number 3 (1997), 415-427.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206126960

Digital Object Identifier
doi:10.32917/hmj/1206126960

Mathematical Reviews number (MathSciNet)
MR1482949

Zentralblatt MATH identifier
0893.31007

Subjects
Primary: 31B30: Biharmonic and polyharmonic equations and functions

Citation

Mizuta, Yoshihiro. An integral representation and fine limits at infinity for functions whose Laplacians iterated $m$ times are measures. Hiroshima Math. J. 27 (1997), no. 3, 415--427. doi:10.32917/hmj/1206126960. https://projecteuclid.org/euclid.hmj/1206126960


Export citation

References

  • [1] D. H. Armitage, A polyharmonic generalization of a theorem on harmonic functions, J. London Math. Soc. (2) 7 (1973), 251-258.
  • [2] N. Aronszajn, T. M. Creese and L. J. Lipkin, Polyharmonic functions, Clarendon Press, Oxford, 1983.
  • [3] W. K. Hayman and P. B. Kennedy, Subharmonic functions, Vol. 1, Academic Press, London, 1976.
  • [4] Y. Mizuta, On the behaviour at infinity of superharmonic functions, J. London Math. Soc. (2) 27 (1983), 97-105.
  • [5] Y. Mizuta, Integral representations of Beppo Levi functions and the existence of limits at infinity, Hiroshima Math. J. 19 (1989), 259-279.
  • [6] Y. Mizuta, A theorem of Hardy-Littlewood and removability for polyharmonic functions satisfying Holder's condition, Hiroshima Math. J. 25 (1995), 315-326.