Hiroshima Mathematical Journal

Bipotential elliptic differential operators

Victor Anandam

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 28, Number 2 (1998), 329-336.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206126764

Digital Object Identifier
doi:10.32917/hmj/1206126764

Mathematical Reviews number (MathSciNet)
MR1637326

Zentralblatt MATH identifier
0913.31004

Subjects
Primary: 35J15: Second-order elliptic equations
Secondary: 31B35: Connections with differential equations 31D05: Axiomatic potential theory

Citation

Anandam, Victor. Bipotential elliptic differential operators. Hiroshima Math. J. 28 (1998), no. 2, 329--336. doi:10.32917/hmj/1206126764. https://projecteuclid.org/euclid.hmj/1206126764


Export citation

References

  • [1] V. Anandam: Espaces harmoniques sans potentiel positif, Ann. Inst. Fourier, 22, 4 (1972), 97-160.
  • [2] V. Anandam: Sur une propriete de la fonction harmonique, Bull. Sc. Math., 101 (1977), 255-263.
  • [3] V. Anandam: Admissible superharmonic functions and associated measures, J. London Math. Soc., 19 (1979), 65-78.
  • [4] M. Brelot: Axiomatique des fonctions harmoniques, Les Presses de Universite de Montreal, 1966.
  • [5] A. De la Pradelle: Approximations et caractere de quasi-analyticite dans la theorie axiomatique des fonctions harmoniques, Ann. Inst. Fourier, 17, 1 (1967), 383-399.
  • [6] R. M. Herve: Recherches axiomatiques sur la theorie des fonctions surharmoniques et du potential, Ann. Inst. Fourier, 12 (1962), 415-571.
  • [7] Premalatha and V. Anandam: On the integral representation of superharmonic functions in Rn , Acad. Royale de Belgique, LXVI (1980), 307-318.
  • [8] B. Rodin and L. Sario: Principal Functions, Van Nostrand, 1968.
  • [9] L. Sario, M. Nakai, C. Wang and L. O. Chung: Classification theory of Riemannian manifolds, Springer-Verlag, L. N. 605 (1977).