Hiroshima Mathematical Journal

Properties of harmonic boundary in nonlinear potential theory

Fumi-Yuki Maeda and Takayori Ono

Full-text: Open access

Article information

Hiroshima Math. J., Volume 30, Number 3 (2000), 513-523.

First available in Project Euclid: 21 March 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 31C45: Other generalizations (nonlinear potential theory, etc.)
Secondary: 30F25: Ideal boundary theory 31B25: Boundary behavior 35J60: Nonlinear elliptic equations


Maeda, Fumi-Yuki; Ono, Takayori. Properties of harmonic boundary in nonlinear potential theory. Hiroshima Math. J. 30 (2000), no. 3, 513--523. doi:10.32917/hmj/1206124611. https://projecteuclid.org/euclid.hmj/1206124611

Export citation


  • [CC] C. Constantinescu and A. Cornea, Ideale Rander Riemannscher Flachen, Springer-Verlag, 1963.
  • [GKa] M. Glasner and R. Katz, On the behavior of solutions of u = Pu at the Royden boundary, J. d'Analyse Math. 22 (1969), 343-354.
  • [GN] M. Glasner and M. Nakai, Riemannian manifolds with discontinuous metrics and the Dirichlet integral, Nagoya Math. J. 46 (1972), 1-48.
  • [HKM] J. Heinonen, T. Kilpelainen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, 1993.
  • [MaO] F-Y. Maeda and T. Ono, Resolutivity of ideal boundary for nonlinear Dirichlet problems, J. Math. Soc. Japan 52 (2000), 561-581.
  • [N] M. Nakai, Potential theory on Royden compactifications (Japanese), Bull. Nagoya Inst. Tech. 47 (1995), 171-191.
  • [T]] H. Tanaka, Harmonic boundaries of Riemannian manifolds, Nonlinear Analysis 14 (1990), 55-67.
  • [T2] H. Tanaka, Kuramochi boundaries of Riemannian manifolds, Potential Theory: proceedings of ICPT 90, 321-329, de Gruyter, 1992.