Homology, Homotopy and Applications

Operations on the Hopf-Hochschild complex for module-algebras

Donald Yau

Full-text: Open access

Abstract

It is proved that Kaygun’s Hopf-Hochschild cochain complex for a module-algebra is a brace algebra with multiplication. As a result, an analogue of Deligne’s Conjecture holds for module-algebras, and the Hopf-Hochschild cohomology of a module-algebra has a Gerstenhaber algebra structure.

Article information

Source
Homology Homotopy Appl., Volume 13, Number 1 (2011), 259-272.

Dates
First available in Project Euclid: 29 July 2011

Permanent link to this document
https://projecteuclid.org/euclid.hha/1311953353

Mathematical Reviews number (MathSciNet)
MR2803874

Zentralblatt MATH identifier
1243.16007

Subjects
Primary: 16E40: (Co)homology of rings and algebras (e.g. Hochschild, cyclic, dihedral, etc.) 16W30

Keywords
Module-algebra Hopf-Hochschild cohomology Gerstenhaber algebra brace algebra Deligne's conjecture

Citation

Yau, Donald. Operations on the Hopf-Hochschild complex for module-algebras. Homology Homotopy Appl. 13 (2011), no. 1, 259--272. https://projecteuclid.org/euclid.hha/1311953353


Export citation