Homology, Homotopy and Applications

La cohomologie totale est un foncteur dérivé

François Lescure

Full-text: Open access

Abstract

We use a certain sheaf of associative rings to define a global Ext functor. We prove that the "cohomologie totale" which we defined in an earlier paper in an analytic way is given by this global Ext. We use this functorial definition to prove some results conjectured in earlier papers. We introduce the "anchor spectral sequence" and use it to give a precise description of the total cohomology for the special case of complex homogeneous spaces.

Article information

Source
Homology Homotopy Appl., Volume 12, Number 1 (2010), 367-400.

Dates
First available in Project Euclid: 28 January 2011

Permanent link to this document
https://projecteuclid.org/euclid.hha/1296223835

Mathematical Reviews number (MathSciNet)
MR2721153

Zentralblatt MATH identifier
1216.32015

Subjects
Primary: 32M05: Complex Lie groups, automorphism groups acting on complex spaces [See also 22E10] 32M25: Complex vector fields 17B66: Lie algebras of vector fields and related (super) algebras

Keywords
Lie algebra of vector fields complex vector fields complex Lie groups groups of automorphisms acting on complex spaces

Citation

Lescure, François. La cohomologie totale est un foncteur dérivé. Homology Homotopy Appl. 12 (2010), no. 1, 367--400. https://projecteuclid.org/euclid.hha/1296223835


Export citation