2020 Geodesic stability, the space of rays and uniform convexity in Mabuchi geometry
Tamás Darvas, Chinh H Lu
Geom. Topol. 24(4): 1907-1967 (2020). DOI: 10.2140/gt.2020.24.1907

Abstract

We establish the essentially optimal form of Donaldson’s geodesic stability conjecture regarding existence of constant scalar curvature Kähler metrics. We carry this out by exploring in detail the metric geometry of Mabuchi geodesic rays, and the uniform convexity properties of the space of Kähler metrics.

Citation

Download Citation

Tamás Darvas. Chinh H Lu. "Geodesic stability, the space of rays and uniform convexity in Mabuchi geometry." Geom. Topol. 24 (4) 1907 - 1967, 2020. https://doi.org/10.2140/gt.2020.24.1907

Information

Received: 5 March 2019; Revised: 7 October 2019; Accepted: 4 November 2019; Published: 2020
First available in Project Euclid: 17 November 2020

zbMATH: 07274792
MathSciNet: MR4173924
Digital Object Identifier: 10.2140/gt.2020.24.1907

Subjects:
Primary: 32Q26 , 32U05 , 53C55

Keywords: Kähler metrics , Mabuchi rays , stability

Rights: Copyright © 2020 Mathematical Sciences Publishers

JOURNAL ARTICLE
61 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.24 • No. 4 • 2020
MSP
Back to Top