Geometry & Topology
- Geom. Topol.
- Volume 23, Number 5 (2019), 2397-2474.
Homological stability of topological moduli spaces
Full-text: Access denied (no subscription detected)
However, an active subscription may be available with MSP at msp.org/gt.
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Abstract
Given a graded –module over an –algebra in spaces, we construct an augmented semi-simplicial space up to higher coherent homotopy over it, called its canonical resolution, whose graded connectivity yields homological stability for the graded pieces of the module with respect to constant and abelian coefficients. We furthermore introduce a notion of coefficient systems of finite degree in this context and show that, without further assumptions, the corresponding twisted homology groups stabilise as well. This generalises a framework of Randal-Williams and Wahl for families of discrete groups.
In many examples, the canonical resolution recovers geometric resolutions with known connectivity bounds. As a consequence, we derive new twisted homological stability results for various examples including moduli spaces of high-dimensional manifolds, unordered configuration spaces of manifolds with labels in a fibration, and moduli spaces of manifolds equipped with unordered embedded discs. This in turn implies representation stability for the ordered variants of the latter examples.
Article information
Source
Geom. Topol., Volume 23, Number 5 (2019), 2397-2474.
Dates
Received: 29 January 2018
Revised: 18 September 2018
Accepted: 26 December 2018
First available in Project Euclid: 22 October 2019
Permanent link to this document
https://projecteuclid.org/euclid.gt/1571709628
Digital Object Identifier
doi:10.2140/gt.2019.23.2397
Mathematical Reviews number (MathSciNet)
MR4019896
Zentralblatt MATH identifier
07121754
Subjects
Primary: 55P48: Loop space machines, operads [See also 18D50] 55R40: Homology of classifying spaces, characteristic classes [See also 57Txx, 57R20] 55R80: Discriminantal varieties, configuration spaces 57R19: Algebraic topology on manifolds 57R50: Diffeomorphisms
Keywords
homological stability $E_n$–algebras operads configuration spaces moduli spaces of manifolds automorphism groups representation stability
Citation
Krannich, Manuel. Homological stability of topological moduli spaces. Geom. Topol. 23 (2019), no. 5, 2397--2474. doi:10.2140/gt.2019.23.2397. https://projecteuclid.org/euclid.gt/1571709628
References
- V I Arnold, Braids of algebraic functions and cohomologies of swallowtails, Uspehi Mat. Nauk 23 (1968) 247–248 In Russian Mathematical Reviews (MathSciNet): MR0231828
- V I Arnold, The cohomology ring of the colored braid group, Mat. Zametki 5 (1969) 227–231 In Russian; translated in Math. Notes 5 (1969) 138–140 Mathematical Reviews (MathSciNet): MR0242196
- C Berger, I Moerdijk, Resolution of coloured operads and rectification of homotopy algebras, from “Categories in algebra, geometry and mathematical physics” (A Davydov, M Batanin, M Johnson, S Lack, A Neeman, editors), Contemp. Math. 431, Amer. Math. Soc., Providence, RI (2007) 31–58 Mathematical Reviews (MathSciNet): MR2342815
- S Betley, Twisted homology of symmetric groups, Proc. Amer. Math. Soc. 130 (2002) 3439–3445 Mathematical Reviews (MathSciNet): MR1918818
Zentralblatt MATH: 1003.20046
Digital Object Identifier: doi:10.1090/S0002-9939-02-06763-1 - E Binz, H R Fischer, The manifold of embeddings of a closed manifold, from “Differential geometric methods in mathematical physics” (H-D Doebner, editor), Lecture Notes in Phys. 139, Springer (1981) 310–329 Mathematical Reviews (MathSciNet): MR613004
- J M Boardman, R M Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Math. 347, Springer (1973)
- C-F Bödigheimer, F R Cohen, R J Milgram, Truncated symmetric products and configuration spaces, Math. Z. 214 (1993) 179–216
- C-F Bödigheimer, F Cohen, L Taylor, On the homology of configuration spaces, Topology 28 (1989) 111–123 Mathematical Reviews (MathSciNet): MR991102
Digital Object Identifier: doi:10.1016/0040-9383(89)90035-9 - S K Boldsen, Improved homological stability for the mapping class group with integral or twisted coefficients, Math. Z. 270 (2012) 297–329 Mathematical Reviews (MathSciNet): MR2875835
Zentralblatt MATH: 1271.57052
Digital Object Identifier: doi:10.1007/s00209-010-0798-y - F Cantero, M Palmer, On homological stability for configuration spaces on closed background manifolds, Doc. Math. 188 (2015) 753–805
- K Casto, $\mathrm{FI}_G$–modules, orbit configuration spaces, and complex reflection groups, preprint (2016) arXiv: 1608.06317
- T Church, Homological stability for configuration spaces of manifolds, Invent. Math. 188 (2012) 465–504 Mathematical Reviews (MathSciNet): MR2909770
Zentralblatt MATH: 1244.55012
Digital Object Identifier: doi:10.1007/s00222-011-0353-4 - T Church, J S Ellenberg, Homology of FI–modules, Geom. Topol. 21 (2017) 2373–2418 Mathematical Reviews (MathSciNet): MR3654111
Zentralblatt MATH: 1371.18012
Digital Object Identifier: doi:10.2140/gt.2017.21.2373
Project Euclid: euclid.gt/1508437644 - T Church, J S Ellenberg, B Farb, FI–modules and stability for representations of symmetric groups, Duke Math. J. 164 (2015) 1833–1910 Mathematical Reviews (MathSciNet): MR3357185
Zentralblatt MATH: 1339.55004
Digital Object Identifier: doi:10.1215/00127094-3120274
Project Euclid: euclid.dmj/1434377462 - T Church, J S Ellenberg, B Farb, R Nagpal, FI–modules over Noetherian rings, Geom. Topol. 18 (2014) 2951–2984 Mathematical Reviews (MathSciNet): MR3285226
Digital Object Identifier: doi:10.2140/gt.2014.18.2951
Project Euclid: euclid.gt/1513732885 - T Church, B Farb, Representation theory and homological stability, Adv. Math. 245 (2013) 250–314 Mathematical Reviews (MathSciNet): MR3084430
Zentralblatt MATH: 1300.20051
Digital Object Identifier: doi:10.1016/j.aim.2013.06.016 - R L Cohen, I Madsen, Surfaces in a background space and the homology of mapping class groups, from “Algebraic geometry, I: Seattle 2005” (D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus, editors), Proc. Sympos. Pure Math. 80, Amer. Math. Soc., Providence, RI (2009) 43–76 Mathematical Reviews (MathSciNet): MR2483932
- D Crowley, J Sixt, Stably diffeomorphic manifolds and $l_{2q+1}(\mathbb Z[\pi])$, Forum Math. 23 (2011) 483–538
- R De Sapio, On $(k{-}1)$–connected $(2k{+}1)$–manifolds, Math. Scand. 25 (1970) 181–189 Mathematical Reviews (MathSciNet): MR0261614
Digital Object Identifier: doi:10.7146/math.scand.a-10955 - W G Dwyer, Twisted homological stability for general linear groups, Ann. of Math. 111 (1980) 239–251 Mathematical Reviews (MathSciNet): MR569072
Zentralblatt MATH: 0404.18012
Digital Object Identifier: doi:10.2307/1971200 - C J Earle, J Eells, The diffeomorphism group of a compact Riemann surface, Bull. Amer. Math. Soc. 73 (1967) 557–559 Mathematical Reviews (MathSciNet): MR212840
Zentralblatt MATH: 0196.09402
Digital Object Identifier: doi:10.1090/S0002-9904-1967-11746-4
Project Euclid: euclid.bams/1183528956 - J Ebert, O Randal-Williams, Semisimplicial spaces, Algebr. Geom. Topol. 19 (2019) 2099–2150 Mathematical Reviews (MathSciNet): MR3995026
Zentralblatt MATH: 07079063
Digital Object Identifier: doi:10.2140/agt.2019.19.2099
Project Euclid: euclid.agt/1566439283 - Z Fiedorowicz, M Stelzer, R M Vogt, Homotopy colimits of algebras over $\mathscr{C}\mathit{at}$–operads and iterated loop spaces, Adv. Math. 248 (2013) 1089–1155 Mathematical Reviews (MathSciNet): MR3107537
Digital Object Identifier: doi:10.1016/j.aim.2013.07.016 - B Fresse, Homotopy of operads and Grothendieck–Teichmüller groups, I: The algebraic theory and its topological background, Mathematical Surveys and Monographs 217, Amer. Math. Soc., Providence, RI (2017) Mathematical Reviews (MathSciNet): MR3643404
- N Friedrich, Homological stability of automorphism groups of quadratic modules and manifolds, Doc. Math. 22 (2017) 1729–1774 Mathematical Reviews (MathSciNet): MR3760514
- W Fulton, J Harris, Representation theory, Graduate Texts in Math. 129, Springer (1991) Mathematical Reviews (MathSciNet): MR1153249
- S Galatius, O Randal-Williams, Homological stability for moduli spaces of high dimensional manifolds, II, Ann. of Math. 186 (2017) 127–204 Mathematical Reviews (MathSciNet): MR3665002
Zentralblatt MATH: 1412.57026
Digital Object Identifier: doi:10.4007/annals.2017.186.1.4 - S Galatius, O Randal-Williams, Homological stability for moduli spaces of high dimensional manifolds, I, J. Amer. Math. Soc. 31 (2018) 215–264 Mathematical Reviews (MathSciNet): MR3718454
Zentralblatt MATH: 1395.57044
Digital Object Identifier: doi:10.1090/jams/884 - W L Gan, L Li, Coinduction functor in representation stability theory, J. Lond. Math. Soc. 92 (2015) 689–711 Mathematical Reviews (MathSciNet): MR3431657
Zentralblatt MATH: 1358.18001
Digital Object Identifier: doi:10.1112/jlms/jdv043 - G Gandini, N Wahl, Homological stability for automorphism groups of RAAGs, Algebr. Geom. Topol. 16 (2016) 2421–2441 Mathematical Reviews (MathSciNet): MR3546470
Zentralblatt MATH: 1387.20027
Digital Object Identifier: doi:10.2140/agt.2016.16.2421
Project Euclid: euclid.agt/1511895919 - A Gramain, Le type d'homotopie du groupe des difféomorphismes d'une surface compacte, Ann. Sci. École Norm. Sup. 6 (1973) 53–66 Mathematical Reviews (MathSciNet): MR0326773
Zentralblatt MATH: 0265.58002
Digital Object Identifier: doi:10.24033/asens.1242 - D Grayson, Higher algebraic $K$–theory, II (after Daniel Quillen), from “Algebraic $K$–theory” (A Dold, B Eckmann, editors), Lecture Notes in Math. 551, Springer (1976) 217–240 Mathematical Reviews (MathSciNet): MR0574096
- M A Guest, A Kozlowsky, K Yamaguchi, Homological stability of oriented configuration spaces, J. Math. Kyoto Univ. 36 (1996) 809–814 Mathematical Reviews (MathSciNet): MR1443749
Zentralblatt MATH: 0891.55013
Digital Object Identifier: doi:10.1215/kjm/1250518453
Project Euclid: euclid.kjm/1250518453 - J L Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. 121 (1985) 215–249 Mathematical Reviews (MathSciNet): MR786348
Zentralblatt MATH: 0579.57005
Digital Object Identifier: doi:10.2307/1971172 - A Hatcher, K Vogtmann, Tethers and homology stability for surfaces, Algebr. Geom. Topol. 17 (2017) 1871–1916 Mathematical Reviews (MathSciNet): MR3677942
Zentralblatt MATH: 06762603
Digital Object Identifier: doi:10.2140/agt.2017.17.1871
Project Euclid: euclid.agt/1510841412 - A Hatcher, N Wahl, Stabilization for mapping class groups of $3$–manifolds, Duke Math. J. 155 (2010) 205–269 Mathematical Reviews (MathSciNet): MR2736166
Digital Object Identifier: doi:10.1215/00127094-2010-055
Project Euclid: euclid.dmj/1288185456 - R Hepworth, Homological stability for families of Coxeter groups, Algebr. Geom. Topol. 16 (2016) 2779–2811 Mathematical Reviews (MathSciNet): MR3572348
Zentralblatt MATH: 1383.20022
Digital Object Identifier: doi:10.2140/agt.2016.16.2779
Project Euclid: euclid.agt/1510841228 - N V Ivanov, On the homology stability for Teichmüller modular groups: closed surfaces and twisted coefficients, from “Mapping class groups and moduli spaces of Riemann surfaces” (C-F Bödigheimer, R M Hain, editors), Contemp. Math. 150, Amer. Math. Soc., Providence, RI (1993) 149–194 Mathematical Reviews (MathSciNet): MR1234264
- R Jimenez Rolland, Representation stability for the cohomology of the moduli space $\mathscr M^n_g$, Algebr. Geom. Topol. 11 (2011) 3011–3041 Mathematical Reviews (MathSciNet): MR2869450
Digital Object Identifier: doi:10.2140/agt.2011.11.3011
Project Euclid: euclid.agt/1513715313 - R Jiménez Rolland, On the cohomology of pure mapping class groups as FI–modules, J. Homotopy Relat. Struct. 10 (2015) 401–424 Mathematical Reviews (MathSciNet): MR3385692
Digital Object Identifier: doi:10.1007/s40062-013-0066-z - W van der Kallen, Homology stability for linear groups, Invent. Math. 60 (1980) 269–295 Mathematical Reviews (MathSciNet): MR586429
Zentralblatt MATH: 0415.18012
Digital Object Identifier: doi:10.1007/BF01390018 - A Kupers, Proving homological stability for homeomorphisms of manifolds, preprint (2015) arXiv: 1510.02456
- A Kupers, J Miller, $E_n$–cell attachments and a local-to-global principle for homological stability, Math. Ann. 370 (2018) 209–269 Mathematical Reviews (MathSciNet): MR3747486
Digital Object Identifier: doi:10.1007/s00208-017-1533-3 - J P May, The geometry of iterated loop spaces, Lectures Notes in Math. 271, Springer (1972) Mathematical Reviews (MathSciNet): MR0420610
- J P May, J Sigurdsson, Parametrized homotopy theory, Mathematical Surveys and Monographs 132, Amer. Math. Soc., Providence, RI (2006)
- D McDuff, Configuration spaces of positive and negative particles, Topology 14 (1975) 91–107 Mathematical Reviews (MathSciNet): MR0358766
Zentralblatt MATH: 0296.57001
Digital Object Identifier: doi:10.1016/0040-9383(75)90038-5 - J Miller, M Palmer, A twisted homology fibration criterion and the twisted group-completion theorem, Q. J. Math. 66 (2015) 265–284 Mathematical Reviews (MathSciNet): MR3356291
Zentralblatt MATH: 1326.55005
Digital Object Identifier: doi:10.1093/qmath/hau030 - J Miller, J C H Wilson, Higher-order representation stability and ordered configuration spaces of manifolds, Geom. Topol. 23 (2019) 2519–2591
- B Mirzaii, W van der Kallen, Homology stability for unitary groups, Doc. Math. 7 (2002) 143–166
- R S Palais, Local triviality of the restriction map for embeddings, Comment. Math. Helv. 34 (1960) 305–312 Mathematical Reviews (MathSciNet): MR0123338
Zentralblatt MATH: 0207.22501
Digital Object Identifier: doi:10.1007/BF02565942 - M Palmer, Homological stability for oriented configuration spaces, Trans. Amer. Math. Soc. 365 (2013) 3675–3711 Mathematical Reviews (MathSciNet): MR3042599
Zentralblatt MATH: 1301.55011
Digital Object Identifier: doi:10.1090/S0002-9947-2012-05743-6 - M Palmer, Twisted homological stability for configuration spaces, Homology Homotopy Appl. 20 (2018) 145–178 Mathematical Reviews (MathSciNet): MR3806572
Zentralblatt MATH: 1408.55011
Digital Object Identifier: doi:10.4310/HHA.2018.v20.n2.a8 - P Patzt, X Wu, Stability results for Houghton groups, Algebr. Geom. Topol. 16 (2016) 2365–2377 Mathematical Reviews (MathSciNet): MR3546468
Zentralblatt MATH: 1352.18003
Digital Object Identifier: doi:10.2140/agt.2016.16.2365
Project Euclid: euclid.agt/1511895917 - N Perlmutter, Homological stability for the moduli spaces of products of spheres, Trans. Amer. Math. Soc. 368 (2016) 5197–5228 Mathematical Reviews (MathSciNet): MR3456177
Zentralblatt MATH: 1370.57010
Digital Object Identifier: doi:10.1090/tran/6564 - N Perlmutter, Linking forms and stabilization of diffeomorphism groups of manifolds of dimension $4n+1$, J. Topol. 9 (2016) 552–606
- D Petersen, A spectral sequence for stratified spaces and configuration spaces of points, Geom. Topol. 21 (2017) 2527–2555 Mathematical Reviews (MathSciNet): MR3654116
Zentralblatt MATH: 1420.55027
Digital Object Identifier: doi:10.2140/gt.2017.21.2527
Project Euclid: euclid.gt/1508437649 - E Ramos, On the degree-wise coherence of $FI_G$–modules, New York J. Math. 23 (2017) 873–895 Mathematical Reviews (MathSciNet): MR3690235
- O Randal-Williams, Homological stability for unordered configuration spaces, Q. J. Math. 64 (2013) 303–326 Mathematical Reviews (MathSciNet): MR3032101
Zentralblatt MATH: 1264.55009
Digital Object Identifier: doi:10.1093/qmath/har033 - O Randal-Williams, Resolutions of moduli spaces and homological stability, J. Eur. Math. Soc. 18 (2016) 1–81 Mathematical Reviews (MathSciNet): MR3438379
Zentralblatt MATH: 1366.55011
Digital Object Identifier: doi:10.4171/JEMS/583 - O Randal-Williams, Cohomology of automorphism groups of free groups with twisted coefficients, Selecta Math. 24 (2018) 1453–1478 Mathematical Reviews (MathSciNet): MR3782426
Zentralblatt MATH: 06862014
Digital Object Identifier: doi:10.1007/s00029-017-0311-0 - O Randal-Williams, N Wahl, Homological stability for automorphism groups, Adv. Math. 318 (2017) 534–626 Mathematical Reviews (MathSciNet): MR3689750
Zentralblatt MATH: 1393.18006
Digital Object Identifier: doi:10.1016/j.aim.2017.07.022 - E Riehl, Categorical homotopy theory, New Mathematical Monographs 24, Cambridge Univ. Press (2014) Mathematical Reviews (MathSciNet): MR3221774
- S V Sam, A Snowden, Representations of categories of $G$–maps, J. Reine Angew. Math. 750 (2019) 197–226 Mathematical Reviews (MathSciNet): MR3943321
Digital Object Identifier: doi:10.1515/crelle-2016-0045 - C Schlichtkrull, M Solberg, Braided injections and double loop spaces, Trans. Amer. Math. Soc. 368 (2016) 7305–7338 Mathematical Reviews (MathSciNet): MR3471092
Zentralblatt MATH: 1345.18006
Digital Object Identifier: doi:10.1090/tran/6614 - G Segal, Configuration-spaces and iterated loop-spaces, Invent. Math. 21 (1973) 213–221 Mathematical Reviews (MathSciNet): MR0331377
Zentralblatt MATH: 0267.55020
Digital Object Identifier: doi:10.1007/BF01390197 - G Segal, Categories and cohomology theories, Topology 13 (1974) 293–312 Mathematical Reviews (MathSciNet): MR0353298
Zentralblatt MATH: 0284.55016
Digital Object Identifier: doi:10.1016/0040-9383(74)90022-6 - G Segal, The topology of spaces of rational functions, Acta Math. 143 (1979) 39–72 Mathematical Reviews (MathSciNet): MR533892
Zentralblatt MATH: 0427.55006
Digital Object Identifier: doi:10.1007/BF02392088
Project Euclid: euclid.acta/1485890033 - A Soulié, The Long–Moody construction and polynomial functors, Ann. Inst. Fourier (Grenoble) (online publication May 2019)
- M Szymik, N Wahl, The homology of the Higman–Thompson groups, Invent. Math. 216 (2019) 445–518 Mathematical Reviews (MathSciNet): MR3953508
Zentralblatt MATH: 1420.19004
Digital Object Identifier: doi:10.1007/s00222-018-00848-z - U Tillmann, Homology stability for symmetric diffeomorphism and mapping class groups, Math. Proc. Cambridge Philos. Soc. 160 (2016) 121–139 Mathematical Reviews (MathSciNet): MR3432333
Zentralblatt MATH: 1371.57024
Digital Object Identifier: doi:10.1017/S0305004115000638 - P Tosteson, Lattice spectral sequences and cohomology of configuration spaces, preprint (2016) arXiv: 1612.06034
- B Totaro, Configuration spaces of algebraic varieties, Topology 35 (1996) 1057–1067 Mathematical Reviews (MathSciNet): MR1404924
Zentralblatt MATH: 0857.57025
Digital Object Identifier: doi:10.1016/0040-9383(95)00058-5 - A A Voronov, The Swiss-cheese operad, from “Homotopy invariant algebraic structures” (J-P Meyer, J Morava, W S Wilson, editors), Contemp. Math. 239, Amer. Math. Soc., Providence, RI (1999) 365–373 Mathematical Reviews (MathSciNet): MR1718089
- N Wahl, Homological stability for the mapping class groups of non-orientable surfaces, Invent. Math. 171 (2008) 389–424 Mathematical Reviews (MathSciNet): MR2367024
Zentralblatt MATH: 1140.55007
Digital Object Identifier: doi:10.1007/s00222-007-0085-7 - C T C Wall, Classification problems in differential topology, VI: Classification of $(s{-}1)$–connected $(2s{+}1)$–manifolds, Topology 6 (1967) 273–296 Mathematical Reviews (MathSciNet): MR0216510
Digital Object Identifier: doi:10.1016/0040-9383(67)90020-1 - G W Whitehead, Elements of homotopy theory, Graduate Texts in Math. 61, Springer (1978) Mathematical Reviews (MathSciNet): MR516508
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Betti numbers and stability for configuration spaces via factorization homology
Knudsen, Ben, Algebraic & Geometric Topology, 2017 - Higher-order representation stability and ordered configuration spaces of manifolds
Miller, Jeremy and Wilson, Jennifer C H, Geometry & Topology, 2019 - Stability results for Houghton groups
Patzt, Peter and Wu, Xiaolei, Algebraic & Geometric Topology, 2016
- Betti numbers and stability for configuration spaces via factorization homology
Knudsen, Ben, Algebraic & Geometric Topology, 2017 - Higher-order representation stability and ordered configuration spaces of manifolds
Miller, Jeremy and Wilson, Jennifer C H, Geometry & Topology, 2019 - Stability results for Houghton groups
Patzt, Peter and Wu, Xiaolei, Algebraic & Geometric Topology, 2016 - (Co)homology of crossed modules with coefficients in a
$\pi_1$-module
Paoli, Simona, Homology, Homotopy and Applications, 2003 - Stabilization for mapping class groups of 3-manifolds
Hatcher, Allen and Wahl, Nathalie, Duke Mathematical Journal, 2010 - Moduli spaces for point modules on naïve blowups
Nevins, Thomas and Sierra, Susan, Algebra & Number Theory, 2013 - Stable moduli spaces of high-dimensional manifolds
Galatius, Søren and Randal-Williams, Oscar, Acta Mathematica, 2014 - Stability for closed surfaces in a background space
Cohen, Ralph L. and Madsen, Ib, Homology, Homotopy and Applications, 2011 - 3-manifold groups and property $T$ of Kazhdan
Fujiwara, Koji, Proceedings of the Japan Academy, Series A, Mathematical Sciences, 1999 - On the algebraic classification of module spectra
Patchkoria, Irakli, Algebraic & Geometric Topology, 2012