Geometry & Topology

Some finiteness results for groups of automorphisms of manifolds

Alexander Kupers

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We prove that in dimension 4,5,7 the homology and homotopy groups of the classifying space of the topological group of diffeomorphisms of a disk fixing the boundary are finitely generated in each degree. The proof uses homological stability, embedding calculus and the arithmeticity of mapping class groups. From this we deduce similar results for the homeomorphisms of n and various types of automorphisms of 2–connected manifolds.

Article information

Geom. Topol., Volume 23, Number 5 (2019), 2277-2333.

Received: 15 January 2017
Revised: 7 November 2018
Accepted: 15 December 2018
First available in Project Euclid: 22 October 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 57S05: Topological properties of groups of homeomorphisms or diffeomorphisms

diffeomorphisms embeddings


Kupers, Alexander. Some finiteness results for groups of automorphisms of manifolds. Geom. Topol. 23 (2019), no. 5, 2277--2333. doi:10.2140/gt.2019.23.2277.

Export citation


  • T Akita, Homological infiniteness of Torelli groups, Topology 40 (2001) 213–221
  • P L Antonelli, D Burghelea, P J Kahn, The nonfinite type of some ${\rm Diff}_{0}M^{n}$, Bull. Amer. Math. Soc. 76 (1970) 1246–1250
  • P Antonelli, D Burghelea, P J Kahn, Concordance-homotopy groups and the noninfinite type of some ${\rm Diff}\sb{0}\,M\sp{n}$, Bull. Amer. Math. Soc. 77 (1971) 719–724
  • A Berglund, I Madsen, Rational homotopy theory of automorphisms of manifolds, preprint (2014)
  • C-F Bödigheimer, Configuration models for moduli spaces of Riemann surfaces with boundary, Abh. Math. Sem. Univ. Hamburg 76 (2006) 191–233
  • A Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 7 (1974) 235–272
  • B Botvinnik, N Perlmutter, Stable moduli spaces of high-dimensional handlebodies, J. Topol. 10 (2017) 101–163
  • P Boavida de Brito, M Weiss, Manifold calculus and homotopy sheaves, Homology Homotopy Appl. 15 (2013) 361–383
  • P Boavida de Brito, M Weiss, Spaces of smooth embeddings and configuration categories, J. Topol. 11 (2018) 65–143
  • D Burghelea, The rational homotopy groups of $\mathrm{{D}iff}(M)$ and $\mathrm{{H}omeo}(M\sp{n})$ in the stability range, from “Algebraic topology, Aarhus 1978” (J L Dupont, I H Madsen, editors), Lecture Notes in Math. 763, Springer (1979) 604–626
  • D Burghelea, R Lashof, The homotopy type of the space of diffeomorphisms, I, Trans. Amer. Math. Soc. 196 (1974) 1–36
  • D Burghelea, R Lashof, The homotopy type of the space of diffeomorphisms, II, Trans. Amer. Math. Soc. 196 (1974) 37–50
  • D Burghelea, R Lashof, M Rothenberg, Groups of automorphisms of manifolds, Lecture Notes in Math. 473, Springer (1975)
  • J Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. 39 (1970) 5–173
  • D Crowley, T Schick, The Gromoll filtration, $KO$–characteristic classes and metrics of positive scalar curvature, Geom. Topol. 17 (2013) 1773–1789
  • D Crowley, T Schick, W Steimle, Harmonic spinors and metrics of positive curvature via the Gromoll filtration and Toda brackets, preprint (2016)
  • W G Dwyer, Twisted homological stability for general linear groups, Ann. of Math. 111 (1980) 239–251
  • J Ebert, O Randal-Williams, Generalised Miller–Morita–Mumford classes for block bundles and topological bundles, Algebr. Geom. Topol. 14 (2014) 1181–1204
  • J Ebert, O Randal-Williams, Torelli spaces of high-dimensional manifolds, J. Topol. 8 (2015) 38–64
  • J Ebert, O Randal-Williams, Semisimplicial spaces, Algebr. Geom. Topol. 19 (2019) 2099–2150
  • N-E Enkelmann, W Lück, M Pieper, M Ullmann, C Winges, On the Farrell–Jones conjecture for Waldhausen's $A$–theory, Geom. Topol. 22 (2018) 3321–3394
  • F T Farrell, W C Hsiang, On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds, from “Algebraic and geometric topology, I” (R J Milgram, editor), Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc., Providence, RI (1978) 325–337
  • M H Freedman, F Quinn, Topology of $4$–manifolds, Princeton Mathematical Series 39, Princeton Univ. Press (1990)
  • S Galatius, O Randal-Williams, Stable moduli spaces of high-dimensional manifolds, Acta Math. 212 (2014) 257–377
  • S Galatius, O Randal-Williams, Abelian quotients of mapping class groups of highly connected manifolds, Math. Ann. 365 (2016) 857–879
  • S Galatius, O Randal-Williams, Homological stability for moduli spaces of high dimensional manifolds, I, J. Amer. Math. Soc. 31 (2018) 215–264
  • P G Goerss, J F Jardine, Simplicial homotopy theory, Progress in Mathematics 174, Birkhäuser, Basel (1999)
  • T G Goodwillie, J R Klein, Multiple disjunction for spaces of smooth embeddings, J. Topol. 8 (2015) 651–674
  • T G Goodwillie, M Weiss, Embeddings from the point of view of immersion theory, II, Geom. Topol. 3 (1999) 103–118
  • A Gramain, Le type d'homotopie du groupe des difféomorphismes d'une surface compacte, Ann. Sci. École Norm. Sup. 6 (1973) 53–66
  • A Haefliger, V Poenaru, La classification des immersions combinatoires, Inst. Hautes Études Sci. Publ. Math. 23 (1964) 75–91
  • I Hambleton, L R Taylor, A guide to the calculation of the surgery obstruction groups for finite groups, from “Surveys on surgery theory, I” (S Cappell, A Ranicki, J Rosenberg, editors), Ann. of Math. Stud. 145, Princeton Univ. Press (2000) 225–274
  • A Hatcher, Homeomorphisms of sufficiently large $P^{2}$–irreducible $3$–manifolds, Topology 15 (1976) 343–347
  • A E Hatcher, Concordance spaces, higher simple-homotopy theory, and applications, from “Algebraic and geometric topology, I” (R J Milgram, editor), Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc., Providence, RI (1978) 3–21
  • A E Hatcher, A proof of the Smale conjecture, ${\rm Diff}(S\sp{3})\simeq {\rm O}(4)$, Ann. of Math. 117 (1983) 553–607
  • A Hatcher, On triangulations of surfaces, Topology Appl. 40 (1991) 189–194
  • A Hatcher, D McCullough, Finiteness of classifying spaces of relative diffeomorphism groups of $3$–manifolds, Geom. Topol. 1 (1997) 91–109
  • A Hatcher, K Vogtmann, Cerf theory for graphs, J. London Math. Soc. 58 (1998) 633–655
  • A Hatcher, J Wagoner, Pseudo-isotopies of compact manifolds, Astérisque 6, Soc. Mat. de France, Paris (1973)
  • H Hendriks, F Laudenbach, Difféomorphismes des sommes connexes en dimension trois, Topology 23 (1984) 423–443
  • A Henriques, D Gepner, Homotopy theory of orbispaces, preprint (2007)
  • G Hirsch, Sur les groupes d'homologie des espaces fibrés, Bull. Soc. Math. Belgique 6 (1953) 79–96
  • W C Hsiang, R W Sharpe, Parametrized surgery and isotopy, Pacific J. Math. 67 (1976) 401–459
  • K Igusa, The stability theorem for smooth pseudoisotopies, $K$–Theory 2 (1988) 1–355
  • K Igusa, Higher Franz–Reidemeister torsion, AMS/IP Studies in Advanced Mathematics 31, Amer. Math. Soc., Providence, RI (2002)
  • N V Ivanov, Groups of diffeomorphisms of Waldhausen manifolds, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 66 (1976) 172–176 In Russian; translated in J. Soviet Math. 12 (1979) 115–118
  • J Kalliongis, D McCullough, Isotopies of $3$–manifolds, Topology Appl. 71 (1996) 227–263
  • M A Kervaire, J W Milnor, Groups of homotopy spheres, I, Ann. of Math. 77 (1963) 504–537
  • R C Kirby, L C Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Ann. of Math. Stud. 88, Princeton Univ. Press (1977)
  • M Kreck, Isotopy classes of diffeomorphisms of $(k{-}1)$–connected almost-parallelizable $2k$–manifolds, from “Algebraic topology, Aarhus 1978” (J L Dupont, I H Madsen, editors), Lecture Notes in Math. 763, Springer (1979) 643–663
  • N H Kuiper, Problems concerning manifolds, from “Manifolds” (N H Kuiper, editor), Springer (1971) iv+231
  • A O Kuku, Some finiteness results in the higher $K$–theory of orders and group-rings, Topology Appl. 25 (1987) 185–191
  • R Lashof, Embedding spaces, Illinois J. Math. 20 (1976) 144–154
  • T C Lawson, Some examples of nonfinite diffeomorphism groups, Proc. Amer. Math. Soc. 34 (1972) 570–572
  • J A Lees, Immersions and surgeries of topological manifolds, Bull. Amer. Math. Soc. 75 (1969) 529–534
  • J Levine, Inertia groups of manifolds and diffeomorphisms of spheres, Amer. J. Math. 92 (1970) 243–258
  • I Madsen, R J Milgram, The classifying spaces for surgery and cobordism of manifolds, Ann. of Math. Stud. 92, Princeton Univ. Press (1979)
  • J P May, The geometry of iterated loop spaces, Lectures Notes in Math. 271, Springer (1972)
  • J McCleary, A user's guide to spectral sequences, 2nd edition, Cambridge Studies in Advanced Mathematics 58, Cambridge Univ. Press (2001)
  • P W Michor, Manifolds of differentiable mappings, Shiva Mathematics Series 3, Shiva, Nantwich (1980)
  • J G Miller, Homotopy groups of diffeomorphism groups, Indiana Univ. Math. J. 24 (1974/75) 719–726
  • J Milnor, On spaces having the homotopy type of a ${\rm CW}$–complex, Trans. Amer. Math. Soc. 90 (1959) 272–280
  • J Milnor, Lectures on the $h$–cobordism theorem, Princeton Univ. Press (1965)
  • I Moerdijk, J-A Svensson, The equivariant Serre spectral sequence, Proc. Amer. Math. Soc. 118 (1993) 263–278
  • S P Novikov, Homotopy properties of the group of diffeomorphisms of the sphere, Dokl. Akad. Nauk SSSR 148 (1963) 32–35 In Russian; translated in Sov. Math. Dokl. 4 (1963) 27–31
  • N Perlmutter, Homological stability for diffeomorphism groups of high-dimensional handlebodies, Algebr. Geom. Topol. 18 (2018) 2769–2820
  • F Quinn, A geometric formulation of surgery, from “Topology of manifolds” (J C Cantrell, J C H Edwards, editors), Markham, Chicago, IL (1970) 500–511
  • F Quinn, Isotopy of $4$–manifolds, J. Differential Geom. 24 (1986) 343–372
  • O Randal-Williams, An upper bound for the pseudoisotopy stable range, Math. Ann. 368 (2017) 1081–1094
  • C P Rourke, Embedded handle theory, concordance and isotopy, from “Topology of manifolds” (J C Cantrell, J C H Edwards, editors), Markham, Chicago, IL (1970) 431–438
  • D Ruberman, An obstruction to smooth isotopy in dimension $4$, Math. Res. Lett. 5 (1998) 743–758
  • G Segal, Categories and cohomology theories, Topology 13 (1974) 293–312
  • J-P Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. 58 (1953) 258–294
  • J-P Serre, Arithmetic groups, from “Homological group theory” (C T C Wall, editor), London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press (1979) 105–136
  • L C Siebenmann, Deformation of homeomorphisms on stratified sets, Comment. Math. Helv. 47 (1972) 123–163
  • D P Sinha, Manifold-theoretic compactifications of configuration spaces, Selecta Math. 10 (2004) 391–428
  • S Smale, The classification of immersions of spheres in Euclidean spaces, Ann. of Math. 69 (1959) 327–344
  • S Smale, Diffeomorphisms of the $2$–sphere, Proc. Amer. Math. Soc. 10 (1959) 621–626
  • K Strebel, Quadratic differentials, Ergeb. Math. Grenzgeb. 5, Springer (1984)
  • D Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977) 269–331
  • G Triantafillou, Automorphisms of spaces with finite fundamental group, Trans. Amer. Math. Soc. 347 (1995) 3391–3403
  • F Waldhausen, Algebraic $K$–theory of spaces, from “Algebraic and geometric topology” (A Ranicki, N Levitt, F Quinn, editors), Lecture Notes in Math. 1126, Springer (1985) 318–419
  • F Waldhausen, B Jahren, J Rognes, Spaces of PL manifolds and categories of simple maps, Ann. of Math. Stud. 186, Princeton Univ. Press (2013)
  • C T C Wall, Classification problems in differential topology, III: Applications to special cases, Topology 3 (1965) 291–304
  • T Watanabe, On Kontsevich's characteristic classes for higher dimensional sphere bundles, I: The simplest class, Math. Z. 262 (2009) 683–712
  • T Watanabe, On Kontsevich's characteristic classes for higher-dimensional sphere bundles, II: Higher classes, J. Topol. 2 (2009) 624–660
  • M Weiss, Embeddings from the point of view of immersion theory, I, Geom. Topol. 3 (1999) 67–101 Correction in 15 (2011) 407–409
  • M S Weiss, Dalian notes on rational Pontryagin classes, preprint (2015)