Open Access
2004 Units of ring spectra and their traces in algebraic $K$–theory
Christian Schlichtkrull
Geom. Topol. 8(2): 645-673 (2004). DOI: 10.2140/gt.2004.8.645

Abstract

Let GL1(R) be the units of a commutative ring spectrum R. In this paper we identify the composition

η R : B G L 1 ( R ) K ( R ) THH ( R ) Ω ( R ) ,

where K(R) is the algebraic K–theory and THH(R) the topological Hochschild homology of R. As a corollary we show that classes in πi1R not annihilated by the stable Hopf map ηπ1s(S0) give rise to non-trivial classes in Ki(R) for i3.

Citation

Download Citation

Christian Schlichtkrull. "Units of ring spectra and their traces in algebraic $K$–theory." Geom. Topol. 8 (2) 645 - 673, 2004. https://doi.org/10.2140/gt.2004.8.645

Information

Received: 25 November 2003; Revised: 21 April 2004; Accepted: 13 March 2004; Published: 2004
First available in Project Euclid: 21 December 2017

zbMATH: 1052.19001
MathSciNet: MR2057776
Digital Object Identifier: 10.2140/gt.2004.8.645

Subjects:
Primary: 19D55 , 55P43
Secondary: 19D10 , 55P48

Keywords: algebraic K-theory , ring spectra , topological Hochschild homology

Rights: Copyright © 2004 Mathematical Sciences Publishers

Vol.8 • No. 2 • 2004
MSP
Back to Top