Open Access
2000 On the geometric boundaries of hyperbolic 4–manifolds
Darren D Long, Alan W Reid
Geom. Topol. 4(1): 171-178 (2000). DOI: 10.2140/gt.2000.4.171

Abstract

We provide, for hyperbolic and flat 3–manifolds, obstructions to bounding hyperbolic 4–manifolds, thus resolving in the negative a question of Farrell and Zdravkovska.

Citation

Download Citation

Darren D Long. Alan W Reid. "On the geometric boundaries of hyperbolic 4–manifolds." Geom. Topol. 4 (1) 171 - 178, 2000. https://doi.org/10.2140/gt.2000.4.171

Information

Received: 18 June 2000; Accepted: 19 July 2000; Published: 2000
First available in Project Euclid: 21 December 2017

zbMATH: 0961.57011
MathSciNet: MR1769269
Digital Object Identifier: 10.2140/gt.2000.4.171

Subjects:
Primary: 57R90
Secondary: 57M50

Keywords: $\eta$–invariant , flat manifold , hyperbolic 3–manifold , totally geodesic

Rights: Copyright © 2000 Mathematical Sciences Publishers

Vol.4 • No. 1 • 2000
MSP
Back to Top