Geometry & Topology
- Geom. Topol.
- Volume 1, Number 1 (1997), 1-7.
Groups acting on CAT(0) cube complexes
Graham A Niblo and Lawrence Reeves
Abstract
We show that groups satisfying Kazhdan’s property have no unbounded actions on finite dimensional cube complexes, and deduce that there is a locally Riemannian manifold which is not homotopy equivalent to any finite dimensional, locally cube complex.
Article information
Source
Geom. Topol., Volume 1, Number 1 (1997), 1-7.
Dates
Received: 28 October 1996
Accepted: 6 February 1997
First available in Project Euclid: 21 December 2017
Permanent link to this document
https://projecteuclid.org/euclid.gt/1513882841
Digital Object Identifier
doi:10.2140/gt.1997.1.1
Mathematical Reviews number (MathSciNet)
MR1432323
Zentralblatt MATH identifier
0887.20016
Subjects
Primary: 20F32
Secondary: 20E42: Groups with a $BN$-pair; buildings [See also 51E24] 20G20: Linear algebraic groups over the reals, the complexes, the quaternions
Keywords
Kazhdan's property (T) Tits' buildings hyperbolic geometry CAT(0) cube complexes locally CAT(-1) spaces $Sp(n,1)$–manifolds
Citation
Niblo, Graham A; Reeves, Lawrence. Groups acting on CAT(0) cube complexes. Geom. Topol. 1 (1997), no. 1, 1--7. doi:10.2140/gt.1997.1.1. https://projecteuclid.org/euclid.gt/1513882841