Geometry & Topology

Virtual fundamental classes via dg–manifolds

Ionuţ Ciocan-Fontanine and Mikhail Kapranov

Full-text: Open access

Abstract

We construct virtual fundamental classes for dg–manifolds whose tangent sheaves have cohomology only in degrees 0 and 1. This condition is analogous to the existence of a perfect obstruction theory in the approach of Behrend and Fantechi [Invent. Math 128 (1997) 45-88] or Li and Tian [J. Amer. Math. Soc. 11 (1998) 119-174]. Our class is initially defined in K–theory as the class of the structure sheaf of the dg–manifold. We compare our construction with that of Behrend and Fantechi as well as with the original proposal of Kontsevich. We prove a Riemann–Roch type result for dg–manifolds which involves integration over the virtual class. We prove a localization theorem for our virtual classes. We also associate to any dg–manifold of our type a cobordism class of almost complex (smooth) manifolds. This supports the intuition that working with dg–manifolds is the correct algebro-geometric replacement of the analytic technique of“deforming to transversal intersection".

Article information

Source
Geom. Topol., Volume 13, Number 3 (2009), 1779-1804.

Dates
Received: 28 March 2008
Accepted: 19 February 2009
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513800258

Digital Object Identifier
doi:10.2140/gt.2009.13.1779

Mathematical Reviews number (MathSciNet)
MR2496057

Zentralblatt MATH identifier
1159.14002

Subjects
Primary: 14F05: Sheaves, derived categories of sheaves and related constructions [See also 14H60, 14J60, 18F20, 32Lxx, 46M20]
Secondary: 14A20: Generalizations (algebraic spaces, stacks)

Keywords
virtual class dg-manifold cobordism

Citation

Ciocan-Fontanine, Ionuţ; Kapranov, Mikhail. Virtual fundamental classes via dg–manifolds. Geom. Topol. 13 (2009), no. 3, 1779--1804. doi:10.2140/gt.2009.13.1779. https://projecteuclid.org/euclid.gt/1513800258


Export citation

References

  • K Akin, D A Buchsbaum, J Weyman, Schur functors and Schur complexes, Adv. in Math. 44 (1982) 207–278
  • K Behrend, Differential graded schemes I: Perfect resolving algebras
  • K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45–88
  • H Cartan, S Eilenberg, Homological algebra, Princeton Univ, Press (1956)
  • I Ciocan-Fontanine, M Kapranov, Derived Quot schemes, Ann. Sci. École Norm. Sup. $(4)$ 34 (2001) 403–440
  • I Ciocan-Fontanine, M M Kapranov, Derived Hilbert schemes, J. Amer. Math. Soc. 15 (2002) 787–815
  • W Fulton, Intersection theory, Ergebnisse der Math. und ihrer Grenzgebiete (3) 2, Springer, Berlin (1984)
  • T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487–518
  • M Kontsevich, Enumeration of rational curves via torus actions, from: “The moduli space of curves (Texel Island, 1994)”, (R Dijkgraaf, C Faber, G van der Geer, editors), Progr. Math. 129, Birkhäuser, Boston (1995) 335–368
  • Y-P Lee, Quantum $K$–theory. I. Foundations, Duke Math. J. 121 (2004) 389–424
  • J Li, G Tian, Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998) 119–174
  • I G Macdonald, Symmetric functions and Hall polynomials, second edition, Oxford Math. Monogr., Oxford Sci. Publ., The Clarendon Press, Oxford Univ. Press, New York (1995) With contributions by A Zelevinsky
  • D C Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Math. 121, Academic Press, Orlando, FL (1986)
  • R E Stong, Relations among characteristic numbers. I, Topology 4 (1965) 267–281
  • R W Thomason, Une formule de Lefschetz en $K$–théorie équivariante algébrique, Duke Math. J. 68 (1992) 447–462