Geometry & Topology

Connected sums of unstabilized Heegaard splittings are unstabilized

David Bachman

Full-text: Open access

Abstract

Let M1 and M2 be closed, orientable 3–manifolds. Let Hi denote a Heegaard surface in Mi. We prove that if H1#H2 comes from stabilizing a lower genus splitting of M1#M2 then one of H1 or H2 comes from stabilizing a lower genus splitting. This answers a question of C Gordon (Problem 3.91 from Kirby’s problem list). We also show that every unstabilized Heegaard splitting has a unique expression as the connected sum of Heegaard splittings of prime 3–manifolds.

Article information

Source
Geom. Topol., Volume 12, Number 4 (2008), 2327-2378.

Dates
Received: 23 November 2004
Revised: 3 May 2005
Accepted: 25 August 2008
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513800128

Digital Object Identifier
doi:10.2140/gt.2008.12.2327

Mathematical Reviews number (MathSciNet)
MR2443968

Zentralblatt MATH identifier
1152.57020

Subjects
Primary: 57N10: Topology of general 3-manifolds [See also 57Mxx]
Secondary: 57M27: Invariants of knots and 3-manifolds

Keywords
Heegaard splitting connected sum incompressible surface

Citation

Bachman, David. Connected sums of unstabilized Heegaard splittings are unstabilized. Geom. Topol. 12 (2008), no. 4, 2327--2378. doi:10.2140/gt.2008.12.2327. https://projecteuclid.org/euclid.gt/1513800128


Export citation

References

  • D Bachman, Critical Heegaard surfaces, Trans. Amer. Math. Soc. 354 (2002) 4015–4042
  • J S Birman, Braids, links, and mapping class groups, Princeton University Press, Princeton, N.J. (1974) \qua Annals of Mathematics Studies, No. 82
  • F Bonahon, J-P Otal, Scindements de Heegaard des espaces lenticulaires, Ann. Sci. École Norm. Sup. $(4)$ 16 (1983) 451–466 (1984)
  • A J Casson, C M Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987) 275–283
  • J Cerf, Sur les difféomorphismes de la sphère de dimension trois $(\Gamma \sb{4}=0)$, Lecture Notes in Mathematics, No. 53, Springer, Berlin (1968)
  • R Engmann, Nicht-homöomorphe Heegaard-Zerlegungen vom Geschlecht $2$ der zusammenhängenden Summe zweier Linsenräume, Abh. Math. Sem. Univ. Hamburg 35 (1970) 33–38
  • D Gabai, Foliations and the topology of $3$–manifolds. III, J. Differential Geom. 26 (1987) 479–536
  • W Haken, Some results on surfaces in $3$–manifolds, from: “Studies in Modern Topology”, Math. Assoc. Amer. (distributed by Prentice–Hall, Englewood Cliffs, N.J.) (1968) 39–98
  • R Kirby, Problems in low-dimensional topology, from: “Geometric topology (Athens, GA, 1993)”, AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc., Providence, RI (1997) 35–473 \qua Edited by Rob Kirby
  • H A Masur, Y N Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902–974
  • Y Moriah, J Schultens, Irreducible Heegaard splittings of Seifert fibered spaces are either vertical or horizontal, Topology 37 (1998) 1089–1112
  • R Qiu, Stabilizations of Reducible Heegaard Splittings
  • H Rubinstein, M Scharlemann, Comparing Heegaard splittings of non-Haken $3$–manifolds, Topology 35 (1996) 1005–1026
  • M Scharlemann, Reconfiguring Qiu's proof of the Gordon Conjecture
  • M Scharlemann, A Thompson, Thin position for $3$–manifolds, from: “Geometric topology (Haifa, 1992)”, Contemp. Math. 164, Amer. Math. Soc., Providence, RI (1994) 231–238
  • J Schultens, The classification of Heegaard splittings for (compact orientable surface)$\,\times\, S\sp 1$, Proc. London Math. Soc. $(3)$ 67 (1993) 425–448
  • J Schultens, The stabilization problem for Heegaard splittings of Seifert fibered spaces, Topology Appl. 73 (1996) 133–139
  • F Waldhausen, Heegaard–Zerlegungen der $3$–Sphäre, Topology 7 (1968) 195–203
  • R Weidmann, Generating tuples of free products, Bull. Lond. Math. Soc. 39 (2007) 393–403