Geometry & Topology

Orbifold string topology

Ernesto Lupercio, Bernardo Uribe, and Miguel A Xicotencatl

Full-text: Open access

Abstract

In this paper we study the string topology (à la Chas–Sullivan) of an orbifold. We define the string homology ring product at the level of the free loop space of the classifying space of an orbifold. We study its properties and do some explicit calculations.

Article information

Source
Geom. Topol., Volume 12, Number 4 (2008), 2203-2247.

Dates
Received: 22 January 2007
Revised: 8 July 2007
Accepted: 4 July 2008
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513800125

Digital Object Identifier
doi:10.2140/gt.2008.12.2203

Mathematical Reviews number (MathSciNet)
MR2431019

Zentralblatt MATH identifier
1149.55005

Subjects
Primary: 55P35: Loop spaces
Secondary: 18D50: Operads [See also 55P48] 55R35: Classifying spaces of groups and $H$-spaces

Keywords
orbifold loop space string topology

Citation

Lupercio, Ernesto; Uribe, Bernardo; Xicotencatl, Miguel A. Orbifold string topology. Geom. Topol. 12 (2008), no. 4, 2203--2247. doi:10.2140/gt.2008.12.2203. https://projecteuclid.org/euclid.gt/1513800125


Export citation

References

  • H Abbaspour, R L Cohen, K Gruher, String topology of Poincaré duality groups, from: “Proceedings of the conference on groups, homotopy and configuration spaces”, (N Iwase et al, editor), Geom. Topol. Monogr. 13, Geom. Topol. Publ., Coventry (2008) 1–10
  • J F Adams, Infinite loop spaces, Annals of Math. Studies 90, Princeton Univ. Press (1978)
  • A Adem, J Leida, Y Ruan, Orbifolds and stringy topology, Cambridge Tracts in Math. 171, Cambridge Univ. Press (2007)
  • A Adem, Y Ruan, Twisted orbifold $K$–theory, Comm. Math. Phys. 237 (2003) 533–556
  • I A Batalin, G A Vilkovisky, Existence theorem for gauge algebra, J. Math. Phys. 26 (1985) 172–184
  • M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grund. der Math. Wissenschaften [Fund. Princ. of Math. Sciences] 319, Springer, Berlin (1999)
  • M Chas, D Sullivan, String topology
  • R L Cohen, V Godin, A polarized view of string topology, from: “Topology, geometry and quantum field theory”, London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 127–154
  • R L Cohen, J D S Jones, A homotopy theoretic realization of string topology, Math. Ann. 324 (2002) 773–798
  • R L Cohen, J D S Jones, J Yan, The loop homology algebra of spheres and projective spaces, from: “Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001)”, Progr. Math. 215, Birkhäuser, Basel (2004) 77–92
  • R L Cohen, A A Voronov, Notes on string topology, from: “String topology and cyclic homology”, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel (2006) 1–95
  • R Dijkgraaf, E Witten, Topological gauge theories and group cohomology, Comm. Math. Phys. 129 (1990) 393–429
  • A Dold, Partitions of unity in the theory of fibrations, Ann. of Math. $(2)$ 78 (1963) 223–255
  • E Getzler, Batalin–Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994) 265–285
  • J D S Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987) 403–423
  • E Lupercio, B Uribe, Loop groupoids, gerbes, and twisted sectors on orbifolds, from: “Orbifolds in mathematics and physics (Madison, WI, 2001)”, Contemp. Math. 310, Amer. Math. Soc. (2002) 163–184
  • E Lupercio, B Uribe, Inertia orbifolds, configuration spaces and the ghost loop space, Q. J. Math. 55 (2004) 185–201
  • E Lupercio, B Uribe, Holonomy for gerbes over orbifolds, J. Geom. Phys. 56 (2006) 1534–1560
  • I Moerdijk, Orbifolds as groupoids: an introduction, from: “Orbifolds in mathematics and physics (Madison, WI, 2001)”, Contemp. Math. 310, Amer. Math. Soc. (2002) 205–222
  • G Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. (1968) 105–112
  • A A Voronov, Notes on universal algebra, from: “Graphs and patterns in mathematics and theoretical physics”, Proc. Sympos. Pure Math. 73, Amer. Math. Soc. (2005) 81–103