Geometry & Topology

Lagrangian matching invariants for fibred four-manifolds: II

Tim Perutz

Full-text: Open access

Abstract

In the second of a pair of papers, we complete our geometric construction of “Lagrangian matching invariants” for smooth four-manifolds equipped with broken fibrations. We prove an index formula, a vanishing theorem for connected sums and an analogue of the Meng–Taubes formula. These results lend support to the conjecture that the invariants coincide with Seiberg–Witten invariants of the underlying four-manifold, and are in particular independent of the broken fibration.

Article information

Source
Geom. Topol., Volume 12, Number 3 (2008), 1461-1542.

Dates
Received: 7 June 2006
Revised: 14 November 2007
Accepted: 11 December 2007
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513800102

Digital Object Identifier
doi:10.2140/gt.2008.12.1461

Mathematical Reviews number (MathSciNet)
MR2421133

Zentralblatt MATH identifier
1144.53104

Subjects
Primary: 53D40: Floer homology and cohomology, symplectic aspects 57R57: Applications of global analysis to structures on manifolds, Donaldson and Seiberg-Witten invariants [See also 58-XX]
Secondary: 57R15: Specialized structures on manifolds (spin manifolds, framed manifolds, etc.)

Keywords
four-manifold Lefschetz fibration Seiberg–Witten invariant pseudo-holomorphic curve Lagrangian correspondence

Citation

Perutz, Tim. Lagrangian matching invariants for fibred four-manifolds: II. Geom. Topol. 12 (2008), no. 3, 1461--1542. doi:10.2140/gt.2008.12.1461. https://projecteuclid.org/euclid.gt/1513800102


Export citation

References

  • D Auroux, S K Donaldson, L Katzarkov, Singular Lefschetz pencils, Geom. Topol. 9 (2005) 1043–1114
  • A Bertram, M Thaddeus, On the quantum cohomology of a symmetric product of an algebraic curve, Duke Math. J. 108 (2001) 329–362
  • R Bott, The stable homotopy of the classical groups, Ann. of Math. $(2)$ 70 (1959) 313–337
  • S K Donaldson, Topological field theories and formulae of Casson and Meng–Taubes, from: “Proceedings of the Kirbyfest (Berkeley, CA, 1998)”, Geom. Topol. Monogr. 2 (1999) 87–102
  • S K Donaldson, Floer homology groups in Yang–Mills theory, Cambridge Tracts in Mathematics 147, Cambridge University Press (2002) With the assistance of M Furuta and D Kotschick
  • S Donaldson, I Smith, Lefschetz pencils and the canonical class for symplectic four-manifolds, Topology 42 (2003) 743–785
  • C J Earle, J Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969) 19–43
  • Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560–673 GAFA 2000 (Tel Aviv, 1999)
  • A Floer, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988) 775–813
  • A Floer, H Hofer, Coherent orientations for periodic orbit problems in symplectic geometry, Math. Z. 212 (1993) 13–38
  • A Floer, H Hofer, D Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995) 251–292
  • K Fukaya, Y-G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory: anomaly and obstruction, book manuscript (2000)
  • R E Gompf, The topology of symplectic manifolds, Turkish J. Math. 25 (2001) 43–59
  • F Hirzebruch, H Hopf, Felder von Flächenelementen in $4$–dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958) 156–172
  • H Hofer, D A Salamon, Floer homology and Novikov rings, from: “The Floer memorial volume”, Progr. Math. 133, Birkhäuser, Basel (1995) 483–524
  • P Kronheimer, T Mrowka, Monopoles and contact structures, Invent. Math. 130 (1997) 209–255
  • P Kronheimer, T Mrowka, P Ozsváth, Z Szabó, Monopoles and lens space surgeries, Ann. of Math. $(2)$ 165 (2007) 457–546
  • L Lazzarini, Existence of a somewhere injective pseudo-holomorphic disc, Geom. Funct. Anal. 10 (2000) 829–862
  • Y-J Lee, Heegaard splittings and Seiberg–Witten monopoles, from: “Geometry and topology of manifolds”, Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 173–202
  • Y-J Lee, Reidemeister torsion in Floer–Novikov theory and counting pseudo-holomorphic tori. I, J. Symplectic Geom. 3 (2005) 221–311
  • D McDuff, D Salamon, $J$–holomorphic curves and symplectic topology, Amer. Math. Soc. Colloquium Publ. 52, Amer. Math. Soc. (2004)
  • J Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965) 286–294
  • T Perutz, Surface-fibrations, four-manifolds, and symplectic Floer homology, PhD thesis, Imperial College London (2005)
  • T Perutz, Lagrangian matching invariants for fibred four-manifolds. I, Geom. Topol. 11 (2007) 759–828
  • S Piunikhin, D Salamon, M Schwarz, Symplectic Floer–Donaldson theory and quantum cohomology, from: “Contact and symplectic geometry (Cambridge, 1994)”, Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 171–200
  • L Pontrjagin, A classification of mappings of the three-dimensional complex into the two-dimensional sphere, Rec. Math. [Mat. Sbornik] N. S. 9 (51) (1941) 331–363
  • M Poźniak, Floer homology, Novikov rings and clean intersections, PhD thesis, University of Warwick (1994)
  • D A Salamon, Seiberg-Witten invariants of mapping tori, symplectic fixed points, and Lefschetz numbers, from: “Proceedings of 6th Gökova Geometry-Topology Conference”, Turkish J. Math. 23 (1999) 117–143
  • M Schwarz, Cohomology operations from $S^1$–cobordisms in Floer homology, PhD thesis, ETH-Zürich (1995)
  • G Segal, The definition of conformal field theory, from: “Topology, geometry and quantum field theory”, London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 421–577
  • P Seidel, The symplectic Floer homology of a Dehn twist, Math. Res. Lett. 3 (1996) 829–834
  • P Seidel, Floer homology and the symplectic isotopy problem, PhD thesis, University of Oxford (1997)
  • P Seidel, Symplectic Floer homology and the mapping class group, Pacific J. Math. 206 (2002) 219–229
  • P Seidel, A long exact sequence for symplectic Floer cohomology, Topology 42 (2003) 1003–1063
  • P Seidel, Fukaya categories and Picard–Lefschetz theory, book manuscript available at http://www-math.mit.edu/\char'176seidel (2006)
  • V de Silva, Products in the symplectic Floer homology of Lagrangian intersections, PhD thesis, University of Oxford (1999)
  • I Smith, Serre–Taubes duality for pseudoholomorphic curves, Topology 42 (2003) 931–979
  • C H Taubes, Seiberg–Witten invariants and pseudo-holomorphic subvarieties for self-dual, harmonic $2$–forms, Geom. Topol. 3 (1999) 167–210
  • M Usher, Vortices and a TQFT for Lefschetz fibrations on $4$–manifolds, Algebr. Geom. Topol. 6 (2006) 1677–1743
  • R Ye, Gromov's compactness theorem for pseudo holomorphic curves, Trans. Amer. Math. Soc. 342 (1994) 671–694