Geometry & Topology

Constructions controlees de champs de Reeb et applications

Vincent Colin and Ko Honda

Full-text: Open access


On every compact, orientable, irreducible 3–manifold V which is toroidal or has torus boundary components we construct a contact 1–form whose Reeb vector field R does not have any contractible periodic orbits and is tangent to the boundary. Moreover, if V is nonempty, then the Reeb vector field R is transverse to a taut foliation. By appealing to results of Hofer, Wysocki, and Zehnder, we show that, under certain conditions, the 3–manifold obtained by Dehn filling along V is irreducible and different from the 3–sphere.

R é sum é

On construit, sur toute variété V de dimension trois orientable, compacte, irréductible, bordée par des tores ou toroïdale, une forme de contact dont le champ de Reeb R est sans orbite périodique contractible et tangent au bord. De plus, si V est non vide, le champ R est transversal à un feuilletage tendu. En utilisant des résultats de Hofer, Wysocki et Zehnder, on obtient sous certaines conditions que la variété obtenue par obturation de Dehn le long du bord de V est irréductible et différente de la sphère S3.

Article information

Geom. Topol., Volume 9, Number 4 (2005), 2193-2226.

Received: 25 November 2004
Revised: 4 September 2005
Accepted: 26 November 2005
First available in Project Euclid: 20 December 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53D35: Global theory of symplectic and contact manifolds [See also 57Rxx]
Secondary: 53C15: General geometric structures on manifolds (almost complex, almost product structures, etc.)

Reeb vector field contact structure taut foliation


Colin, Vincent; Honda, Ko. Constructions controlees de champs de Reeb et applications. Geom. Topol. 9 (2005), no. 4, 2193--2226. doi:10.2140/gt.2005.9.2193.

Export citation


  • F Bourgeois, V Colin, Homologie de contact des variétés toroï dales, \gtref920059299313
  • D Calegari, The geometry of ${\bf R}$–covered foliations, \gtref4200017457515
  • D Calegari, Foliations with one-sided branching, Geom. Dedicata 96 (2003) 1–53
  • D Calegari, Promoting essential laminations, prépublication (2002) \arxivmath.GT/0210148
  • V Colin, Chirurgies d'indice un et isotopies de sphères dans les variétés de contact tendues, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 659–663
  • V Colin, Recollement de variétés de contact tendues, Bull. Soc. Math. France 127 (1999) 43–69
  • V Colin, Sur la torsion des structures de contact tendues, Ann. Sci. École Norm. Sup. (4) 34 (2001) 267–286
  • V Colin, Chirurgies de Dehn admissibles dans les variétés de contact tendues, Ann. Inst. Fourier (Grenoble) 51 (2001) 1419–1435
  • V Colin, Une infinité de structures de contact tendues sur les variétés toroï dales, Comment. Math. Helv. 76 (2001) 353–372
  • V Colin, Structures de contact tendues sur les variétés toroï dales et approximation de feuilletages sans composante de Reeb, Topology 41 (2002) 1017–1029
  • V Colin, E Giroux, K Honda, On the coarse classification of tight contact structures, from: “Topology and geometry of manifolds (Athens, GA, 2001)”, Proc. Sympos. Pure Math. 71, Amer. Math. Soc. Providence, RI (2003) 109–120
  • V Colin, E Giroux, K Honda, Finitude homotopique et isotopique des structures de contact tendues, en préparation
  • M Culler, C Gordon, J Luecke, P Shalen, Dehn surgery on knots, Ann. of Math. (2) 125 (1987) 237–300
  • Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560–673
  • Y Eliashberg, W Thurston, Confoliations, University Lecture Series 13, American Mathematical Society, Providence, RI (1998)
  • S Fenley, Foliations, topology and geometry of 3–manifolds: $\bf R$–covered foliations and transverse pseudo-Anosov flows, Comment. Math. Helv. 77 (2002) 415–490
  • S Fenley, L Mosher, Quasigeodesic flows in hyperbolic 3–manifolds, Topology 40 (2001) 503–537
  • D Gabai, Foliations and the topology of $3$–manifolds, J. Differential Geom. 18 (1983) 445–503
  • D Gabai, Foliations and the topology of $3$–manifolds. II, J. Differential Geom. 26 (1987) 461–478
  • D Gabai, Foliations and the topology of $3$–manifolds. III, J. Differential Geom. 26 (1987) 479–536
  • D Gabai, U Oertel, Essential laminations in $3$–manifolds, Ann. of Math. (2) 130 (1989) 41–73
  • E Giroux, Convexité en topologie de contact, Comment. Math. Helv. 66 (1991) 637–677
  • E Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, from: “Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002)”, Higher Ed. Press, Beijing (2002) 405–414
  • H Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515–563
  • H Hofer, M Kriener, Holomorphic curves in contact dynamics, from: “Differential equations: La Pietra 1996 (Florence)”, Proc. Sympos. Pure Math. 65, Amer. Math. Soc., Providence, RI (1999) 77–131
  • H Hofer, K Wysocki, E Zehnder, Unknotted periodic orbits for Reeb flows on the three-sphere, Topol. Methods Nonlinear Anal. 7 (1996) 219–244
  • H Hofer, K Wysocki, E Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. (2) 157 (2003) 125–255
  • K Honda, Gluing tight contact structures, Duke Math. J. 115 (2002) 435–478
  • K Honda, W Kazez, G Matić, Tight contact structures and taut foliations, \gtref420007219242
  • K Honda, W Kazez, G Matić, Convex decomposition theory, Int. Math. Res. Not. (2002) 55–88
  • K Honda, W Kazez, G Matić, On the Gabai–Eliashberg–Thurston theorem, Comment. Math. Helv. 79 (2004) 502–515
  • S Makar-Limanov, Tight contact structures on solid tori, Trans. Amer. Math. Soc. 350 (1998) 1013–1044
  • L Mosher, Laminations and flows transverse to finite depth foliations. Part i: branched surfaces and dynamics, prépublication
  • S Novikov, Topology of foliations, Trans. Moscow Math. Soc. 14 (1963) 268–305
  • G Perelman, The entropy formula for the Ricci flow and its geometric applications.
  • G Perelman, Ricci flow with surgery on three-manifolds, prépublication.
  • G Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds.
  • R Roberts, Taut foliations in punctured surface bundles. I, Proc. London Math. Soc. (3) 82 (2001) 747–768
  • R Roberts, Taut foliations in punctured surface bundles. II, Proc. London Math. Soc. (3) 83 (2001) 443–471
  • S Schwartzman, Asymptotic cycles, Ann. of Math. (2) 66 (1957) 270–284
  • W Thurston, A norm for the homology of $3$–manifolds, Mem. Amer. Math. Soc. 59 (1986) i–vi and 99–130
  • W Thurston, Three-manifolds, Foliations and Circles, I, prépublication.
  • W Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982) 357–381