Geometry & Topology

Strongly fillable contact 3–manifolds without Stein fillings

Paolo Ghiggini

Full-text: Open access

Abstract

We use the Ozsváth–Szabó contact invariant to produce examples of strongly symplectically fillable contact 3–manifolds which are not Stein fillable.

Article information

Source
Geom. Topol., Volume 9, Number 3 (2005), 1677-1687.

Dates
Received: 23 June 2005
Accepted: 4 August 2005
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513799646

Digital Object Identifier
doi:10.2140/gt.2005.9.1677

Mathematical Reviews number (MathSciNet)
MR2175155

Zentralblatt MATH identifier
1091.57018

Subjects
Primary: 57R17: Symplectic and contact topology
Secondary: 57R57: Applications of global analysis to structures on manifolds, Donaldson and Seiberg-Witten invariants [See also 58-XX]

Keywords
contact structure symplectically fillable Stein fillable Ozsváth–Szabó invariant

Citation

Ghiggini, Paolo. Strongly fillable contact 3–manifolds without Stein fillings. Geom. Topol. 9 (2005), no. 3, 1677--1687. doi:10.2140/gt.2005.9.1677. https://projecteuclid.org/euclid.gt/1513799646


Export citation

References

  • F Ding, H Geiges, Symplectic fillability of tight contact structures on torus bundles, \agtref120018153172
  • Y Eliashberg, Filling by holomorphic discs and its applications, from: “Geometry of low-dimensional manifolds, 2 (Durham, 1989)”, London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press, Cambridge (1990) 45–67
  • Y Eliashberg, Unique holomorphically fillable contact structure on the $3$-torus, Internat. Math. Res. Notices (1996) 77–82
  • Y Eliashberg, A few remarks about symplectic filling, Geom. Topol. 8 (2004) 277–293
  • J B Etnyre, K Honda, On the nonexistence of tight contact structures, Ann. of Math. (2) 153 (2001) 749–766
  • J B Etnyre, K Honda, Tight contact structures with no symplectic fillings, Invent. Math. 148 (2002) 609–626
  • P Ghiggini, Ozsváth-Szabó invariants and fillability of contact structures, Math. Z. to appear.
  • E Giroux, Une infinité de structures de contact tendues sur une infinité de variétés, Invent. Math. 135 (1999) 789–802
  • R E Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998) 619–693
  • M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307–347
  • P B Kronheimer, T S Mrowka, Monopoles and contact structures, Invent. Math. 130 (1997) 209–255
  • P Lisca, G Matić, Tight contact structures and Seiberg-Witten invariants, Invent. Math. 129 (1997) 509–525
  • P Lisca, A I Stipsicz, Tight, not semi-fillable contact circle bundles, Math. Ann. 328 (2004) 285–298
  • P Lisca, A I Stipsicz, An infinite family of tight, not semi-fillable contact three-manifolds, \gtref720033010551073
  • P Ozsváth, Z Szabó, Heegaard–Floer homologies and contact structures.
  • P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds.
  • P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179–261
  • P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2) 159 (2004) 1159–1245
  • P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004) 1027–1158
  • O Plamenevskaya, Contact structures with distinct Heegaard Floer invariants, Math. Res. Lett. 11 (2004) 547–561