Geometry & Topology

Khovanov's homology for tangles and cobordisms

Dror Bar-Natan

Full-text: Open access

Abstract

We give a fresh introduction to the Khovanov Homology theory for knots and links, with special emphasis on its extension to tangles, cobordisms and 2–knots. By staying within a world of topological pictures a little longer than in other articles on the subject, the required extension becomes essentially tautological. And then a simple application of an appropriate functor (a “TQFT”) to our pictures takes them to the familiar realm of complexes of (graded) vector spaces and ordinary homological invariants.

Article information

Source
Geom. Topol., Volume 9, Number 3 (2005), 1443-1499.

Dates
Received: 3 November 2004
Accepted: 4 July 2005
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513799641

Digital Object Identifier
doi:10.2140/gt.2005.9.1443

Mathematical Reviews number (MathSciNet)
MR2174270

Zentralblatt MATH identifier
1084.57011

Subjects
Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}
Secondary: 57M27: Invariants of knots and 3-manifolds

Keywords
2–knots canopoly categorification cobordism Euler characteristic Jones polynomial Kauffman bracket Khovanov knot invariants movie moves planar algebra skein modules tangles trace groups

Citation

Bar-Natan, Dror. Khovanov's homology for tangles and cobordisms. Geom. Topol. 9 (2005), no. 3, 1443--1499. doi:10.2140/gt.2005.9.1443. https://projecteuclid.org/euclid.gt/1513799641


Export citation

References

  • M M Asaeda, J H Przytycki, A S Sikora, Khovanov homology of links in $I$–bundles over surfaces.
  • M M Asaeda, J H Przytycki, A S Sikora, Categorification of the Kauffman bracket skein module of $I$-bundles over surfaces, \agtref420045211771210
  • D Bar-Natan, On Khovanov's categorification of the Jones polynomial, \agtref2200216337370
  • J S Carter, M Saito, Knotted surfaces and their diagrams, Mathematical Surveys and Monographs 55, American Mathematical Society, Providence, RI (1998)
  • J S Carter, M Saito, S Satoh, Ribbon-moves for 2–knots with 1–handles attached and Khovanov-Jacobsson numbers.
  • M Jacobsson, An invariant of link cobordisms from Khovanov homology, \agtref420045312111251
  • M Jacobsson, Khovanov's conjecture over $\bbZ[c]$.
  • V Jones, Planar algebras, I, New Zealand Journal of Mathematics (to appear) \arxivmath.QA/9909027
  • L H Kauffman, State models and the Jones polynomial, Topology 26 (1987) 395–407
  • M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359–426
  • M Khovanov, A functor-valued invariant of tangles, \agtref2200230665741
  • M Khovanov, Patterns in knot cohomology. I, Experiment. Math. 12 (2003) 365–374
  • M Khovanov, An invariant of tangle cobordisms, Trans. Amer. Math. Soc. (to appear) \arxivmath.QA/0207264
  • E S Lee, On Khovanov invariant for alternating links.
  • J H Przytycki, Fundamentals of Kauffman bracket skein modules, Kobe J. Math. 16 (1999) 45–66
  • J A Rasmussen, Khovanov homology and the slice genus, e-print (2004) \arxivmath.GT/0402131
  • J A Rasmussen, Khovanov's invariant for closed surfaces, e-print (2005) \arxivmath.GT/0502527
  • R Scharein, KnotPlot, http://www.pims.math.ca/knotplot/
  • A N Shumakovitch, Torsion of the Khovanov homology, e-print (2004) \arxivmath.GT/0405474
  • J Stallings, Centerless groups–-an algebraic formulation of Gottlieb's theorem, Topology 4 (1965) 129–134
  • O Viro, Remarks on definition of Khovanov homology, e-print (2002) \arxivmath.GT/0202199
  • S Wolfram, The Mathematica$\sp \circledR$ book, Wolfram Media, Inc. Champaign, IL (1999)