Geometry & Topology

On the Ozsvath-Szabo invariant of negative definite plumbed 3-manifolds

András Némethi

Full-text: Open access

Abstract

The main goal of the present article is the computation of the Heegaard Floer homology introduced by Ozsváth and Szabó for a family of plumbed rational homology 3–spheres. The main motivation is the study of the Seiberg–Witten type invariants of links of normal surface singularities.

Article information

Source
Geom. Topol., Volume 9, Number 2 (2005), 991-1042.

Dates
Received: 22 August 2004
Accepted: 13 April 2005
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513799610

Digital Object Identifier
doi:10.2140/gt.2005.9.991

Mathematical Reviews number (MathSciNet)
MR2140997

Zentralblatt MATH identifier
1138.57301

Subjects
Primary: 57M27: Invariants of knots and 3-manifolds 57R57: Applications of global analysis to structures on manifolds, Donaldson and Seiberg-Witten invariants [See also 58-XX]
Secondary: 14E15: Global theory and resolution of singularities [See also 14B05, 32S20, 32S45] 14B15: Local cohomology [See also 13D45, 32C36] 14J17: Singularities [See also 14B05, 14E15] 32S25: Surface and hypersurface singularities [See also 14J17] 32S45: Modifications; resolution of singularities [See also 14E15]

Keywords
3–manifolds Ozsváth–Szabó Heegaard Floer homology Seiberg–Witten invariants Seifert manifolds Lens spaces Casson–Walker invariant $\mathbb{Q}$–homology spheres Reidemeister–Turaev torsion normal surface singularities rational singularities elliptic singularities

Citation

Némethi, András. On the Ozsvath-Szabo invariant of negative definite plumbed 3-manifolds. Geom. Topol. 9 (2005), no. 2, 991--1042. doi:10.2140/gt.2005.9.991. https://projecteuclid.org/euclid.gt/1513799610


Export citation

References

  • M Artin, Some numerical criteria for contractibility of curves on algebraic surfaces, Amer. J. Math. 84 (1962) 485–496
  • M Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966) 129–136
  • R E Gompf, I A Stipsicz, An Introduction to $4$–Manifolds and Kirby Calculus, Graduate Studies in Mathematics 20, Amer. Math. Soc. (1999)
  • H Grauert, Über Modifikationen und exceptionelle analytische Mengen, Math. Ann. 146 (1962) 331–368
  • H B Laufer, On rational singularities, Amer. J. Math. 94 (1972) 597–608
  • H B Laufer, On minimally elliptic singularities, Amer. J. Math. 99 (1977) 1257–1295
  • C Lescop, Global Surgery Formula for the Casson–Walker Invariant, Annals of Mathematics Studies 140, Princeton University Press (1996)
  • I Luengo, A Melle-Hernández, A Némethi, Links and analytic invariants of superisolated singularities, J. Algebraic Geom. 2 (1993) 1–23
  • A Némethi, “Weakly” Elliptic Gorenstein Singularities of Surfaces, Invent. Math. 137 (1999) 145–167
  • A Némethi, Five lectures on normal surface singularities, from: “Low dimensional topology (Eger 1996/Budapest 1998)”, Bolyai Soc. Math. Stud. 8 (1999) 269–351
  • A Némethi, Line bundles associated with normal surface singularities.
  • A Némethi, L I Nicolaescu, Seiberg–Witten invariants and surface singularities, \gtref620029269328
  • A Némethi, L I Nicolaescu, Seiberg–Witten invariants and surface singularities II (singularities with good $\C^*$–action), J. London Math. Soc. 69 (2004) 593–607
  • W D Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981) 299–344
  • W Neumann, Abelian covers of quasihomogeneous surface singularities, from: “Singularities Part 2 (Arcata Calif. 1981)”, Proc. Sympos. Pure Math. 40 (1983) 233–244
  • L I Nicolaescu, Seiberg–Witten invariants of rational homology 3–spheres, Commun. Contemp. Math. 6 (2004) 833–866
  • P S Ozsváth, Z Szabó, Holomorphic discs and topological invariants for closed three-spheres, Ann. of Math. (2) 159 (2004) 1027–1158
  • P S Ozsváth, Z Szabó, Holomorphic discs and three-manifold invariants: properties and applications, Ann. of Math. (2) 159 (2004) 1159–1245
  • P S Ozsváth, Z Szabó, Holomorphic triangle invariants and the topology of symplectic four-manifolds, Duke Math. J. 121 (2004) 1–34
  • P S Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundaries, Adv. Math. 173 (2003) 179–261
  • P S Ozsváth, Z Szabó, On the Floer homology of plumbed three-manifolds, \gtref720035185224
  • H Pinkham, Normal surface singularities with ${\C}^*$ action, Math. Ann. 117 (1977) 183–193
  • J Stevens, Elliptic surface singularities and smoothing of curves, Math. Ann. 267 (1984) 239–249
  • V G Turaev, Torsion invariants of $\Spin^c$–structures on $3$–manifolds, Math. Res. Lett. 4 (1997) 679–695