Geometry & Topology

On the topology of ending lamination space

David Gabai

Full-text: Open access

Abstract

We show that if S is a finite-type orientable surface of genus g and with p punctures, where 3g+p5, then (S) is (n1)–connected and (n1)–locally connected, where dim(P(S))=2n+1=6g+2p7. Furthermore, if g=0, then (S) is homeomorphic to the (p4)–dimensional Nöbeling space. Finally if n0, then P(S) is connected.

Article information

Source
Geom. Topol., Volume 18, Number 5 (2014), 2683-2745.

Dates
Received: 19 October 2011
Revised: 5 December 2011
Accepted: 15 July 2012
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513732882

Digital Object Identifier
doi:10.2140/gt.2014.18.2683

Mathematical Reviews number (MathSciNet)
MR3285223

Zentralblatt MATH identifier
1307.57012

Subjects
Primary: 57M50: Geometric structures on low-dimensional manifolds
Secondary: 20F65: Geometric group theory [See also 05C25, 20E08, 57Mxx]

Keywords
Nöbeling lamination

Citation

Gabai, David. On the topology of ending lamination space. Geom. Topol. 18 (2014), no. 5, 2683--2745. doi:10.2140/gt.2014.18.2683. https://projecteuclid.org/euclid.gt/1513732882


Export citation

References

  • S M Ageev, Axiomatic method of partitions in the theory of Nöbeling spaces, III: Consistency of the system of axioms, Mat. Sb. 198 (2007) 3–30
  • I Agol, Tameness of hyperbolic $3$–manifolds
  • P Alexandrov, P Urysohn, Uber nulldimensionale Punktmengen, Math. Ann. 98 (1928) 89–106
  • L Bers, Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960) 94–97
  • M Bestvina, Characterizing $k$–dimensional universal Menger compacta, Mem. Amer. Math. Soc. 71 (1988)
  • F Bonahon, Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. 124 (1986) 71–158
  • M Bonk, O Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000) 266–306
  • H G Bothe, Eine Einbettung $m$–dimensionaler Mengen in einen $(m+1)$–dimensionalen absoluten Retrakt, Fund. Math. 52 (1963) 209–224
  • J F Brock, R D Canary, Y N Minsky, The classification of Kleinian surface groups, II: The ending lamination conjecture, Ann. of Math. (2) 176 (2012) 1–149
  • D Calegari, D Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19 (2006) 385–446
  • R Engelking, Theory of dimensions finite and infinite, Sigma Series in Pure Mathematics 10, Heldermann, Lemgo (1995)
  • A Fathi, F Laudenbach, V Poenaru, Travaux de Thurston sur les surfaces, Astérisque 66-67, Soc. Math. France, Paris (1991)
  • D Gabai, Almost filling laminations and the connectivity of ending lamination space, Geom. Topol. 13 (2009) 1017–1041
  • U Hamenstädt, Train tracks and the Gromov boundary of the complex of curves, from: “Spaces of Kleinian groups”, (Y N Minsky, M Sakuma, C Series, editors), London Math. Soc. Lecture Note Ser. 329, Cambridge Univ. Press (2006) 187–207
  • J L Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157–176
  • W J Harvey, Boundary structure of the modular group, from: “Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference”, (I Kra, B Maskit, editors), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 245–251
  • S Hensel, P Przytycki, The ending lamination space of the five-punctured sphere is the Nöbeling curve, J. Lond. Math. Soc. (2) 84 (2011) 103–119
  • S-T Hu, Theory of retracts, Wayne State University Press, Detroit (1965)
  • W Hurewicz, H Wallman, Dimension Theory, Princeton Math. Series 4, Princeton University Press (1941)
  • N V Ivanov, Complexes of curves and Teichmüller modular groups, Uspekhi Mat. Nauk 42 (1987) 49–91, 255
  • N V Ivanov, L Ji, Infinite topology of curve complexes and non-Poincaré duality of Teichmüller modular groups, Enseign. Math. 54 (2008) 381–395
  • K Kawamura, M Levin, E D Tymchatyn, A characterization of $1$–dimensional Nöbeling spaces, from: “Proceedings of the $12^{\text{th}}$ Summer Conference on General Topology and its Applications”, (R C Flagg, K P Hart, J Norden, E D Tymchatyn, M Tuncali, editors), Topology Proc. 22 (1997) 155–174
  • S P Kerckhoff, Simplicial systems for interval exchange maps and measured foliations, Ergodic Theory Dynam. Systems 5 (1985) 257–271
  • E Klarreich, The boundary at infinity of the curve complex and the relative mapping class group, preprint Available at \setbox0\makeatletter\@url http://www.msri.org/people/members/klarreic/curvecomplex.ps {\unhbox0
  • C J Leininger, M Mj, S Schleimer, The universal Cannon–Thurston maps and the boundary of the curve complex
  • C J Leininger, S Schleimer, Connectivity of the space of ending laminations, Duke Math. J. 150 (2009) 533–575
  • M Levin, Characterizing Nöbeling spaces
  • F Luo, Automorphisms of the complex of curves, Topology 39 (2000) 283–298
  • H Masur, Interval exchange transformations and measured foliations, Ann. of Math. 115 (1982) 169–200
  • H A Masur, Y N Minsky, Geometry of the complex of curves, I: Hyperbolicity, Invent. Math. 138 (1999) 103–149
  • K Menger, Uber umfassendste $n$–dimensionale Mengen, Proc. Akad. Wetensch. Amst. 29 (1926) 1125–1128
  • L Mosher, Train track expansions of measured foliations, preprint Available at \setbox0\makeatletter\@url http://andromeda.rutgers.edu/~mosher/ {\unhbox0
  • A Nagórko, Characterization and topological rigidity of Nöbeling manifolds, Mem. Amer. Math. Soc. 223 (2013)
  • G N öbeling, Über eine $n$–dimensionale Universalmenge im $R\sp {2n+1}$, Math. Ann. 104 (1931) 71–80
  • R C Penner, J L Harer, Combinatorics of train tracks, Annals of Math. Studies 125, Princeton Univ. Press (1992)
  • K Rafi, S Schleimer, Curve complexes with connected boundary are rigid
  • W P Thurston, Hyperbolic Structures on $3$–manifolds, II: Surface groups and $3$–manifolds which fiber over the circle
  • W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979) Available at \setbox0\makeatletter\@url http://msri.org/publications/books/gt3m/ {\unhbox0
  • W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417–431
  • W P Thurston, Minimal stretch maps between hyperbolic surfaces (1998)
  • W A Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. 115 (1982) 201–242
  • X Zhu, F Bonahon, The metric space of geodesic laminations on a surface, I, Geom. Topol. 8 (2004) 539–564