Geometry & Topology

Computing $\widehat{\mathit{HF}}$ by factoring mapping classes

Robert Lipshitz, Peter S Ozsváth, and Dylan P Thurston

Full-text: Open access

Abstract

Bordered Heegaard Floer homology is an invariant for 3–manifolds with boundary. In particular, this invariant associates to a handle decomposition of a surface F a differential graded algebra, and to an arc-slide between two handle decompositions, a bimodule over the two algebras. In this paper, we describe these bimodules for arc-slides explicitly, and then use them to give a combinatorial description of HF̂ of a closed 3–manifold, as well as the bordered Floer homology of any 3–manifold with boundary.

Article information

Source
Geom. Topol., Volume 18, Number 5 (2014), 2547-2681.

Dates
Received: 1 July 2011
Revised: 18 September 2013
Accepted: 16 February 2014
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513732881

Digital Object Identifier
doi:10.2140/gt.2014.18.2547

Mathematical Reviews number (MathSciNet)
MR3285222

Zentralblatt MATH identifier
1320.57018

Subjects
Primary: 57M27: Invariants of knots and 3-manifolds
Secondary: 53D40: Floer homology and cohomology, symplectic aspects

Keywords
Heegaard Floer homology mapping class group arc-slides

Citation

Lipshitz, Robert; Ozsváth, Peter S; Thurston, Dylan P. Computing $\widehat{\mathit{HF}}$ by factoring mapping classes. Geom. Topol. 18 (2014), no. 5, 2547--2681. doi:10.2140/gt.2014.18.2547. https://projecteuclid.org/euclid.gt/1513732881


Export citation

References

  • J E Andersen, A J Bene, R C Penner, Groupoid extensions of mapping class representations for bordered surfaces, Topology Appl. 156 (2009) 2713–2725
  • A J Bene, A chord diagrammatic presentation of the mapping class group of a once bordered surface, Geom. Dedicata 144 (2010) 171–190
  • B Keller, A brief introduction to $A$–infinity algebras Available at \setbox0\makeatletter\@url http://people.math.jussieu.fr/~keller/publ/IntroAinfEdinb.pdf {\unhbox0
  • R Lipshitz, A technology demonstration of a package to compute Heegaard Floer invariants using bordered Floer homology Available at \setbox0\makeatletter\@url http://math.columbia.edu/~lipshitz/research.html#Programming| {\unhbox0
  • R Lipshitz, P S Ozsváth, D P Thurston, Bimodules in bordered Heegaard Floer homology
  • R Lipshitz, P S Ozsváth, D P Thurston, Bordered Heegaard Floer homology: Invariance and pairing
  • R Lipshitz, P S Ozsváth, D P Thurston, Computing cobordism maps with bordered Floer homology, in preparation
  • R Lipshitz, P S Ozsváth, D P Thurston, Heegaard Floer homology as morphism spaces, Quantum Topol. 2 (2011) 381–449
  • P S Ozsváth, A I Stipsicz, Z Szabó, Combinatorial Heegaard Floer homology and nice Heegaard diagrams
  • P S Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311–334
  • P S Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027–1158
  • J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003) Available at \setbox0\makeatletter\@url http://search.proquest.com/docview/305332635 {\unhbox0
  • S Sarkar, J Wang, An algorithm for computing some Heegaard Floer homologies, Ann. of Math. 171 (2010) 1213–1236
  • W A Stein, et al, Sage mathematics software (version $5.9$) Available at \setbox0\makeatletter\@url http://www.sagemath.org {\unhbox0
  • R Zarev, Bordered Floer homology for sutured manifolds