Geometry & Topology

Tetrahedra of flags, volume and homology of $\mathrm{SL}(3)$

Nicolas Bergeron, Elisha Falbel, and Antonin Guilloux

Full-text: Open access

Abstract

In the paper we define a “volume” for simplicial complexes of flag tetrahedra. This generalizes and unifies the classical volume of hyperbolic manifolds and the volume of CR tetrahedral complexes considered in Falbel [Q. J. Math. 62 (2011) 397–415], and Falbel and Wang [Asian J. Math. 17 (2013) 391–422]. We describe when this volume belongs to the Bloch group and more generally describe a variation formula in terms of boundary data. In doing so, we recover and generalize results of Neumann and Zagier [Topology 24 (1985) 307–332], Neumann [Topology ’90 (1992) 243–271] and Kabaya [Topology Appl. 154 (2007) 2656–2671]. Our approach is very related to the work of Fock and Goncharov [Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1–211; Ann. Sci. Éc. Norm. Supér. 42 (2009) 865–930].

Article information

Source
Geom. Topol., Volume 18, Number 4 (2014), 1911-1971.

Dates
Received: 30 September 2011
Revised: 3 October 2013
Accepted: 27 February 2014
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513732856

Digital Object Identifier
doi:10.2140/gt.2014.18.1911

Mathematical Reviews number (MathSciNet)
MR3268771

Zentralblatt MATH identifier
1365.57023

Subjects
Primary: 57M50: Geometric structures on low-dimensional manifolds
Secondary: 57N10: Topology of general 3-manifolds [See also 57Mxx] 57R20: Characteristic classes and numbers

Keywords
Bloch group $3$–manifolds $\mathrm{PGL}(3,\mathbb{C})$ tetrahedra

Citation

Bergeron, Nicolas; Falbel, Elisha; Guilloux, Antonin. Tetrahedra of flags, volume and homology of $\mathrm{SL}(3)$. Geom. Topol. 18 (2014), no. 4, 1911--1971. doi:10.2140/gt.2014.18.1911. https://projecteuclid.org/euclid.gt/1513732856


Export citation

References

  • N Bergeron, E Falbel, A Guilloux, Local rigidity for $\mathrm{PGL}(3 , \mathbb{C})$ representations of $3$–manifold groups, Exp. Math. 22 (2013) 410–420
  • F Bonahon, Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form, Ann. Fac. Sci. Toulouse Math. 5 (1996) 233–297
  • F Bonahon, A Schläfli-type formula for convex cores of hyperbolic $3$–manifolds, J. Differential Geom. 50 (1998) 25–58
  • T Dimofte, M Gabella, A B Goncharov, $K\!$–decompositions and $3d$ gauge theories
  • E Falbel, A spherical CR structure on the complement of the figure eight knot with discrete holonomy, J. Differential Geom. 79 (2008) 69–110
  • E Falbel, A volume function for spherical CR tetrahedra, Q. J. Math. 62 (2011) 397–415
  • E Falbel, P-V Koseleff, F Rouillier, Representations of fundamental groups of $3$–manifolds into $\mathrm{PGL}(3,\mathbb{C})$: Exact computations in low complexity
  • E Falbel, Q Wang, A combinatorial invariant for spherical CR structures, Asian J. Math. 17 (2013) 391–422
  • V V Fock, A B Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006) 1–211
  • V V Fock, A B Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. 42 (2009) 865–930
  • S Garoufalidis, M Goerner, C K Zickert, Gluing equations for $\mathrm{PGL}(n,\mathbb{C})$–representations of $3$–manifolds
  • S Garoufalidis, D P Thurston, C K Zickert, The complex volume of $\mathrm{SL}(n,\mathbb{C})$–representations of $3$–manifolds (2013)
  • J Genzmer, Sur les triangulations des structures CR–sphériques, PhD thesis, Université Pierre et Marie Curie (2010)
  • H Jacobowitz, An introduction to CR structures, Mathematical Surveys and Monographs 32, Amer. Math. Soc. (1990)
  • Y Kabaya, Pre-Bloch invariants of $3$–manifolds with boundary, Topology Appl. 154 (2007) 2656–2671
  • W D Neumann, Combinatorics of triangulations and the Chern–Simons invariant for hyperbolic $3$–manifolds, from: “Topology '90”, (B Apanasov, W D Neumann, A W Reid, L Siebenmann, editors), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter, Berlin (1992) 243–271
  • W D Neumann, Extended Bloch group and the Cheeger–Chern–Simons class, Geom. Topol. 8 (2004) 413–474
  • W D Neumann, D Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307–332
  • R Riley, A personal account of the discovery of hyperbolic structures on some knot complements, Expo. Math. 31 (2013) 104–115
  • A A Suslin, Homology of ${\rm GL}\sb{n}$, characteristic classes and Milnor $K\!$–theory, Trudy Mat. Inst. Steklov. 165 (1984) 188–204 In Russian; translated in Proc. Steklov Inst. Math. 165 (1985) 207–226
  • W P Thurston, The geometry and topology of $3$–manifolds, lecture notes, Princeton University (1978–1981) Available at \setbox0\makeatletter\@url http://library.msri.org/books/gt3m {\unhbox0
  • D Zagier, The dilogarithm function, from: “Frontiers in number theory, physics, and geometry, II”, (P Cartier, B Julia, P Moussa, P Vanhove, editors), Springer, Berlin (2007) 3–65
  • C K Zickert, The extended Bloch group and algebraic $K\!$–theory (2010)