Geometry & Topology

An analytic family of representations for the mapping class group of punctured surfaces

Francesco Costantino and Bruno Martelli

Full-text: Open access

Abstract

We use quantum invariants to define an analytic family of representations for the mapping class group Mod(Σ) of a punctured surface Σ. The representations depend on a complex number A with |A|1 and act on an infinite-dimensional Hilbert space. They are unitary when A is real or imaginary, bounded when |A|<1, and only densely defined when |A|=1 and A is not a root of unity. When A is a root of unity distinct from ±1 and ±i the representations are finite-dimensional and isomorphic to the “Hom” version of the well-known TQFT quantum representations.

The unitary representations in the interval [1,0] interpolate analytically between two natural geometric unitary representations, the SU(2)–character variety representation studied by Goldman and the multicurve representation induced by the action of Mod(Σ) on multicurves.

The finite-dimensional representations converge analytically to the infinite-dimensional ones. We recover Marché and Narimannejad’s convergence theorem, and Andersen, Freedman, Walker and Wang’s asymptotic faithfulness, that states that the image of a noncentral mapping class is always nontrivial after some level r0. When the mapping class is pseudo-Anosov we give a simple polynomial estimate of the level r0 in terms of its dilatation.

Article information

Source
Geom. Topol., Volume 18, Number 3 (2014), 1485-1538.

Dates
Received: 13 June 2013
Accepted: 15 January 2014
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513732800

Digital Object Identifier
doi:10.2140/gt.2014.18.1485

Mathematical Reviews number (MathSciNet)
MR3228457

Zentralblatt MATH identifier
1311.57041

Subjects
Primary: 57R56: Topological quantum field theories
Secondary: 57M27: Invariants of knots and 3-manifolds 22D10: Unitary representations of locally compact groups

Keywords
quantum invariants mapping class groups representations in Hilbert space

Citation

Costantino, Francesco; Martelli, Bruno. An analytic family of representations for the mapping class group of punctured surfaces. Geom. Topol. 18 (2014), no. 3, 1485--1538. doi:10.2140/gt.2014.18.1485. https://projecteuclid.org/euclid.gt/1513732800


Export citation

References

  • J E Andersen, Asymptotic faithfulness of the quantum $\mathrm{SU}(n)$ representations of the mapping class groups, Ann. of Math. 163 (2006) 347–368
  • T M Apostol, Introduction to analytic number theory, Springer, New York (1976)
  • C Blanchet, N Habegger, G Masbaum, P Vogel, Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995) 883–927
  • D Bullock, Rings of $\mathrm{SL}\sb 2(\mathbb{C})$–characters and the Kauffman bracket skein module, Comment. Math. Helv. 72 (1997) 521–542
  • D Bullock, C Frohman, J Kania-Bartoszyńska, The Yang–Mills measure in the Kauffman bracket skein module, Comment. Math. Helv. 78 (2003) 1–17
  • M Burger, P de la Harpe, Constructing irreducible representations of discrete groups, Proc. Indian Acad. Sci. Math. Sci. 107 (1997) 223–235
  • L Charles, J Marché, Multicurves and regular functions on the representation variety of a surface in $\mathrm{SU}(2)$, Comment. Math. Helv. 87 (2012) 409–431
  • F Costantino, J Marché, Generating series and asymptotics of classical spin networks, to appear in Journal of Europ. Math. Soc.
  • B Farb, D Margalit, A primer on mapping class groups, Princeton Mathematical Series 49, Princeton Univ. Press (2012)
  • M H Freedman, K Walker, Z Wang, Quantum $\mathrm{SU}(2)$ faithfully detects mapping class groups modulo center, Geom. Topol. 6 (2002) 523–539
  • C Frohman, J Kania-Bartoszyńska, The quantum content of the normal surfaces in a three-manifold, J. Knot Theory Ramifications 17 (2008) 1005–1033
  • W M Goldman, The mapping class group acts reducibly on $\mathrm{SU}(n)$–character varieties, from “Primes and knots” (T Kohno, M Morishita, editors), Contemp. Math. 416, Amer. Math. Soc. (2006) 115–119
  • E Guentner, N Higson, Weak amenability of $\mathrm{CAT}(0)$–cubical groups, Geom. Dedicata 148 (2010) 137–156
  • J-Y Ham, W T Song, The minimum dilatation of pseudo-Anosov $5$–braids, Experiment. Math. 16 (2007) 167–179
  • J Hoste, J H Przytycki, The Kauffman bracket skein module of $S^1\times S^2$, Math. Z. 220 (1995) 65–73
  • T Januszkiewicz, For right-angled Coxeter groups $z^{\vert g\vert }$ is a coefficient of a uniformly bounded representation, Proc. Amer. Math. Soc. 119 (1993) 1115–1119
  • L H Kauffman, State models and the Jones polynomial, Topology 26 (1987) 395–407
  • L H Kauffman, S L Lins, Temperley–Lieb recoupling theory and invariants of $3$–manifolds, Annals of Mathematics Studies 134, Princeton Univ. Press (1994)
  • A N Kirillov, N Y Reshetikhin, Representations of the algebra ${U}\sb q(\mathrm{sl}_2)$, $q$–orthogonal polynomials and invariants of links, from “Infinite-dimensional Lie algebras and groups” (V G Kac, editor), Adv. Ser. Math. Phys. 7, World Sci. Publ., Teaneck, NJ (1989) 285–339
  • W B R Lickorish, Three-manifolds and the Temperley–Lieb algebra, Math. Ann. 290 (1991) 657–670
  • W B R Lickorish, Skeins and handlebodies, Pacific J. Math. 159 (1993) 337–349
  • W B R Lickorish, An introduction to knot theory, Graduate Texts in Mathematics 175, Springer, New York (1997)
  • G W Mackey, The theory of unitary group representations, University of Chicago Press (1976)
  • J Marché, The Kauffman skein algebra of a surface at $\sqrt{-1}$, Math. Ann. 351 (2011) 347–364
  • J Marché, M Narimannejad, Some asymptotics of topological quantum field theory via skein theory, Duke Math. J. 141 (2008) 573–587
  • G Masbaum, P Vogel, $3$–valent graphs and the Kauffman bracket, Pacific J. Math. 164 (1994) 361–381
  • A Papadopoulos, R C Penner, A characterization of pseudo-Anosov foliations, Pacific J. Math. 130 (1987) 359–377
  • L Paris, Actions and irreducible representations of the mapping class group, Math. Ann. 322 (2002) 301–315
  • R C Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443–450
  • R C Penner, Universal constructions in Teichmüller theory, Adv. Math. 98 (1993) 143–215
  • M V Pimsner, Cocycles on trees, J. Operator Theory 17 (1987) 121–128
  • J H Przytycki, Skein modules of $3$–manifolds, Bull. Polish Acad. Sci. Math. 39 (1991) 91–100
  • J H Przytycki, Kauffman bracket skein module of a connected sum of $3$–manifolds, Manuscripta Math. 101 (2000) 199–207
  • T Pytlik, R Szwarc, An analytic family of uniformly bounded representations of free groups, Acta Math. 157 (1986) 287–309
  • J Roberts, Quantum invariants and skein theory, PhD thesis, University of Cambridge (1994) Available at \setbox0\makeatletter\@url http://math.ucsd.edu/~justin/papers.html {\unhbox0
  • A S Sikora, Skein modules and TQFT, from “Knots in Hellas '98 (Delphi)” (C M Gordon, V F R Jones, L H Kauffman, S Lambropoulou, J H Przytycki, editors), Ser. Knots Everything 24, World Sci. Publ. (2000) 436–439
  • A Valette, Cocycles d'arbres et représentations uniformément bornées, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990) 703–708